暨 南 大 学 考 试 试 卷

彩

江

									1		
教		学年度第学期						课程类别			
师	课程名称:		微积分I				必修 [√] 选修[] 考试方式				
填									考版/J式 开卷[] 闭卷[√]		
県	授课教师:							试卷类别 (A, B, C)			
写	考试时间:							[A]		共6页	
考生				,	学院			专业			班(级)
填写	学院										
	号	_	_	_		<u> </u>		四	五.		总分
得	分										
评	阅人										
一、 单选题 (共10小题,每小题2分,共20分) 答题须知:本题答案必须写在如下表格中,否则不给分.											
小是	页 1		2	3	4	5	6	7	8	9	10
答第	Ř										
1. 下列函数中,属于单调递增函数的是····································											
3. 若 $x \to x_0$ 时, $f(x)$ 和 $g(x)$ 均为无穷小量, 则当 $x \to x_0$ 时, 未必为无穷小量的 是											

(A) $f(x)+g(x)$;	(B) $f(x)-g(x)$;	(C) $f(x) \cdot g(x)$;	(D) $\frac{f(x)}{g(x)}$.
			B)
(A) $(-\infty, -1)$;		(B) $(-1, 1)$;	
(C) $(1,+\infty)$;		(D) $(-\infty, -1)$ $\bigcup (1, +\infty)$	∞).
5. 在区间[0,1]上不	满足罗尔中值定理条	件的函数是	· · · · · · · · · (D)
$(A) f(x) = x^2 - x;$		(B) $f(x) = x^3 - 3x^2 + $	2x;
(C) $f(x) = x^3 - x^2$;		(D) $f(x) = (x-1)^2$.	
6. 设 $f(x) = 2x^2 + x$,	由拉格朗日中值定理	!知,在区间(0,2)上存	在一点 ξ, f'(ξ) =(C)
(A) 0;	(B) 1;	(C) 5;	(D) 不存在.
7. 若函数 $f(x)$ 在区	间 (a,b) 内总有 $f'(x)$	>0, $f''(x)<0$, 则在区	\mathbb{Z} 间 (a,b) 内 $f(x)$ (\mathbb{C})
(A) 单调递增,上凹;	(B) 单调递减,下凹;	(C) 单调递增,下凹;	(D) 单调递减,上凹.
8. 设曲线 $y = \frac{x}{x^2 - 2x}$,	则 $f(x)$ 的渐近线数量	量是	······(C)
(A) 0;	(B) 1;	(C) 2;	(D) 3.
9. 若 $(1,4)$ 为 $y = ax$	$c^3 + bx^2$ 的拐点,则…		····· (B)
(A) $a = 6$, $b = -2$;	(B) $a = -2, b = 6;$	(C) $a = 0, b = 4;$	(D) $a = -1, b = 5;$
10. 设函数 $y = f(\frac{1}{2}x)$	(²)的二阶导数存在,原	刺 y"=・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	······(D)
(A) $f''(\frac{1}{2}x^2)$;		(B) $x \cdot f''(\frac{1}{2}x^2)$;	
(C) $f'(\frac{1}{2}x^2) + x \cdot f''(\frac{1}{2}x^2)$	x^{2}):	(D) $f'(\frac{1}{2}x^2) + x^2 \cdot f''(\frac{1}{2}x^2)$	$\frac{1}{2}x^{2}$).

二、填空题(共8小题,每小题3分,共24分)

答题须知:本题答案必须写在如下表格中,否则不给分.

小题	1	2	3	4
答案				
小题	5	6	7	8
答案				

- 1. $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^{2x} = \underline{e^2}$.
- **2.** 函数 $y = 3x^2 6x + 7$ 的驻点为 x = 1.
- **3.** 函数 y = x + 1 的反函数为 x = y 1
- **4.** 函数 $y = \ln(1 x^2)$ 的定义域为 (-1,1) .
- 5. 函数 $f(x) = \begin{cases} (x-1)^2 \sin \frac{1}{x-1}, & x \neq 1 \\ 0, & x = 1 \end{cases}$,则 f'(1) = 0
- **6.** 函数 $y = \frac{1}{3}x^3$ 的微分 $dy = x^2 dx$.

ÄΉ

- **7.** 若 $x \to 0$ 时, ln(1+2x) 与 kx 是等价无穷小量, 则常数 k = 2.
- **8.** 函数 $y = x^3 12x + 4$ 的极小值点为 x = 2.

三、判断题,对与错分别使用" $\sqrt{}$ "和" \times "标记(共4小题,每小题1分,共4分)

答题须知:本题答案必须写在如下表格中,否则不给分.

小题	1	2	3	4
答案				

- **2.** 函数 f(x) 在点 x_0 处可微的充分必要条件是 f(x) 在点 x_0 处可导. · · · · · · · · (√)
- **3.** 有函数 f(x) 和 g(x), 若 f(x) > g(x) 总成立, 且存在两个常数 a, b 使得 $\lim_{x \to x_0} f(x) =$
- a, $\lim_{x \to x_0} g(x) = b$, 则 $a \ge b$. \cdots (\checkmark)
- 4. 可导函数中导数取值为 0 的点即是函数的极值点....(x)

四、计算题(共4题,共44分)

1. 求极限 (每小题 4分, 共 16分).

(1)
$$\lim_{x\to 1} (2x^2 + 7x - 8);$$

(2)
$$\lim_{x \to \infty} \frac{x^{2025} + x^{2024} + 2023}{10x^{2025} + 2022x^{2022}}.$$

(3)
$$\lim_{x\to 1} \left(\frac{1}{x-1} - \frac{2}{x^2-1}\right)$$
;

$$(4) \lim_{x\to 0} \frac{\sin x^2}{x}.$$

解. (1)

$$\lim_{x \to 1} (2x^2 + 7x - 8) = 2 \cdot 1^2 + 7 \cdot 1 - 8 = 1$$

……4分

(2)

$$\lim_{x \to \infty} \frac{x^{2025} + x^{2024} + 2023}{10x^{2025} + 2022x^{2022}} = \frac{1}{10}$$

……4分

(3)

$$\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{2}{x^2 - 1} \right) = \lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{2}{(x - 1)(x + 1)} \right)$$
$$= \lim_{x \to 1} \frac{1}{x + 1} = \frac{1}{2}$$

……4分

(4)

$$\lim_{x \to 0} \frac{\sin x^{2}}{x} = \lim_{x \to 0} \frac{(\sin x^{2})'}{(x)'}$$
$$= \lim_{x \to 0} 2x \cdot \cos x^{2} = 0$$

災

$$(\text{Der} \lim_{x \to 0} \frac{\sin x^2}{x} = \lim_{x \to 0} \left(x \cdot \frac{\sin x^2}{x^2} \right) = \lim_{x \to 0} x \cdot \lim_{x \to 0} \frac{\sin x^2}{x^2} = 0 \cdot 1 = 0)$$
4

2. 求下列函数的导函数 y' 或在给定点处的导数值 (每小题 4 分, 共 16 分).

(1) $y = 4x^2 + 6x + 8$; (2) $y = \cos x \cdot \ln x$;

解.(1)

$$y' = (4x^2 + 6x + 8)' = 8x + 6$$

·····4 5

(2)

$$y' = (\cos x)' \cdot \ln x + \cos x \cdot (\ln x)'$$
$$= -\sin x \cdot \ln x + \frac{\cos x}{x}$$

……4分

(3)

$$y' = \left(\frac{x^2 + 1}{x + 1}\right)'$$

$$= \frac{(x^2 + 1)' \cdot (x + 1) - (x^2 + 1) \cdot (x + 1)'}{(x + 1)^2}$$

$$= \frac{x^2 + 2x - 1}{(x + 1)^2}$$

.....4分

(4)

$$\frac{dx}{dt} = 2t, \quad \frac{dy}{dt} = e^t$$

$$\frac{dy}{dx} = \frac{e^t}{2t}, \quad \frac{dy}{dx}\Big|_{t=1} = \frac{e^1}{2 \cdot 1} = \frac{e}{2}$$

……4分

3. 求椭圆 $\frac{x^2}{2} + \frac{y^2}{8} = 1$ 上在点 (1,2) 处的切线方程 (6分).

解. 对方程 $\frac{x^2}{2} + \frac{y^2}{8} = 1$ 左右两端同时关于 x 求导得到

$$x + \frac{y \cdot y'}{4} = 0$$

解得

$$y' = \frac{-4x}{y}$$

....3分

所求切线的斜率为

$$y'|_{x=1,y=2} = \frac{-4 \cdot 1}{2} = -2$$

切线方程为

$$y-2=-2(x-1)$$

可简化为

$$2x + y - 4 = 0$$

……6分

4. 设函数 $f(x) = \begin{cases} 2-x, & x>1 \\ ax^2, & -1 \le x \le 1.$ 已知 f(x) 在 x=1 处连续. (1) 请确定 a 的值; $x-1, & x<-1 \end{cases}$

(2) 求函数的间断点并判断其类型 (6分).

解.

(1) f(x) 在 x = 1 处连续,故

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1) = a$$

即

$$\lim_{x \to 1^{-}} a x^{2} = a = \lim_{x \to 1^{+}} (2 - x) = 1 = a.$$

-----3分

(2) 考虑 x = -1

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} (x - 1) = -2$$

$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} x^2 = 1$$

 $\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} x^{2} = 1$ $\lim_{x \to -1^{+}} f(x) 与 \lim_{x \to -1^{-}} f(x) 均存在, 且 \lim_{x \to -1^{+}} f(x) \neq \lim_{x \to -1^{-}} f(x), 故 x = -1 为函数 f(x)$ 的跳跃间断点.

五、综合应用题(共1题,共8分)

已知某产品的需求函数为 P(Q) = 1000 - 2Q, 成本函数为 C(Q) = 250 + 4Q. 假设产销 平衡,则

- (1) 写出收益函数 R(Q) 和利润函数 L(Q).
- (2) 写出边际收益函数;在仅考虑收益的情形下,合理的产量Q应为多少?
- (3) 产量 Q 为多少时利润最大?

解.

(1) 收益函数 $R(Q) = P(Q) \cdot Q = 1000Q - 2Q^2$.

利润函数 $L(Q) = R(Q) - C(Q) = 1000Q - 2Q^2 - 250 - 4Q = 996Q - 250 - 2Q^2$

……2分

- (3) 对利润函数求导数

$$L'(Q) = 996 - 4Q$$

令 L'(Q) = 996 - 4Q = 0,解得 Q = 249,并且 L''(Q) = -4 < 0,故 Q = 249 为唯一极大值点,且无极小值点,因此产量 Q = 249 时利润最大.

-----8分

Zj

115