
Lecture 1

Unexpected behaviors of

high-dimensional spaces and

introductory

Counter-intuition of high dimensional data

Vastness of hypersphere. Consider an inscribed hypersphere with radius r to a hypercube

with edges of length 2r in d-dimensional Euclidean space,

Vhypersphere =
2rdπd/2

dΓ(d/2)
, Vhypercube = (2r)d,

where Γ is the gamma function. Then

lim
d→∞

Vhypersphere

Vhypercube
=

πd/2

d2d−1Γ(d/2)
= 0, (1.1)

which implies that data points uniformly generated in a high-dimensional hypercube are

concentrated in the corners.

Concentration effect of Lp norms. For any fixed n, the difference between the

minimum and that maximum distance under Lp norm between a random reference point

Q and a list of n random data points P1, . . . , Pn become indiscernible compared to the

minimum distance as

lim
d→∞

E
(
distmax(d)− distmin(d)

distmin(d)

)
= 0, (1.2)

where distmax(d) and distmin(d) denote the maximum and the minimum distance the refer-

ence point Q and n points {Pi}ni=1, respectively, in a d-dimensional space.

Concentration of Gaussian distribution. Let Z be a random vector in Rd with

independent N (0, 1) coordinates. Then

P (|∥Z∥2 −
√
d| ≥ t) ≤ 2 exp(−ct2), (1.3)

where c > 0 is a constant, t ≥ 0 and ∥ · ∥ is the Euclidean vector norm.
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Almost orthogonality of independent vectors. Let x,y ∈ Rd be drawn at random

with respect to the spherical Gaussian distribution with zero mean and unit variance. Then

for every ϵ > 0 and for all d ≥ 1 the estimate

P

[∣∣∣∣⟨ x

∥x∥
,

y

∥y∥
⟩
∣∣∣∣ ≥ ϵ

]
≤ 2/ϵ+ 7√

d

holds.

From inside out

Non-asymptotic analysis

To illustrate the difference between asymptotic and non-asymptotic analysis, we recall the

statement of the weak law of large numbers

Theorem 1.0.1: Weak law of large numbers (WLLN)

Let X be a real random variable with expectation EX = p. Consider an iid sequence

(Xi : i ∈ N) of copies of X. From the running averages:

X̄n :=
1

n

n∑
i=1

Xi for n ∈ N.

Then, for each t > 0, we have the limit

P{|X̄n − p| ≥ t} → 0 as n → ∞.

The Weak Law of Large Numbers (WLLN) demonstrates that the sample average con-

verges to the expectation of a random variable as the sample size increases, providing an

asymptotic result. However, it does not address the question of how close the sample average

is to the expectation for a fixed sample size n. That is precisely the focus of non-asymptotic

analysis.

Goals of this course

Concentration Consider a fixed-size sample (X1, X2, . . . , Xn) generated from a distribu-

tion. For a measurable function f : Rn → R, we define a random variable.

Z = f(X1, X2, . . . , Xn).

Concentration inequalities provide an upper bound on the probability that the random

variable Z deviates from its median MZ or expectation EZ by more than a given tolerance

t > 0. These inequalities are in the forms of

P{|Z − EZ| ≥ t} ≤ □,

P{|Z −MZ| ≥ t} ≤ △.

We immediately recognize concentration inequalities tell stories in a non-asymptotic way.
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For example, let f be the average function Z = 1
n

n∑
i=1

Xi, the concentration inequality can tell

us about the probability of the derivation of sample average from its expectation controlled

by a given tolerance t, i.e.,

P{|Z − EZ| ≤ t} = 1− P{|Z − EZ| ≥ t} ≥ 1−□,

with fixed sample size.

Suprema The concentration inequalities do not offer any information on the value of

Ef(X1, X2, . . . , Xn).. The estimation of this value depends on f . Here we analysis a specific

but useful type of f , i.e., the max function.

Specifically, let

Z = sup
t∈T

Xt,

Z is defined as the supremum of a random process {Xt}t∈T , a family of random variables

indexed by a set T. For example, let Xi ∼ N (0, σ2), given an indexed set T = {1, 2, . . . , N},

Z = max
i=1,2,...,N

Xi.

The reason that suprema plays an important role in high-dimensional problem arises in

twofold. First, a family of random variables may be interdependent and taking the supreme

controls all of them simultaneously. Second, some quantities are naturally mathematically

presented in suprema.

Example (Random matrices) Let A = (Aij) be a n-by-n random matrix with each of

its element is an iid Gaussian random variable. Suppose we want to estimate the largest

singular value of A, i.e., the spectral norm of A, which is mathematically defined as

∥A∥ = sup
u,v∈B

⟨u,Av⟩,

where B denotes the Euclidean unit ball. Let Xu,v := ⟨u,Av⟩, ∥A∥ is the supreme of the

random process {Xu,v}(u,v)∈B×B.

Example (Empirical risk minimization) The core issue in machine learning is computing

arg min
θ∈Θ

E[ℓ(θ, X)]︸ ︷︷ ︸
generalization error

.

In practice, the distribution of X is unknown, and alternatively we collect an iid sample

(X1, X2, . . . , Xn) from the distribution and minimize the empirical risk solving

arg min
θ∈Θ

1

n

n∑
i=1

ℓ(θ, Xi)︸ ︷︷ ︸
empirical risk

,

with the hope that

E[ℓ(θ, X)] ≈ 1

n

n∑
i=1

ℓ(θ, Xi).

Measuring how close is the empirical risk to the generalization error over the the param-
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eter space Θ leads the investigate the uniform derivation

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

ℓ(θ, Xi)− E[ℓ(θ, X)]

∣∣∣∣∣ .
We will not talk about Universality and Phase transitions, which you can learn from

APC 550 Lecture Notes1

Review of Expectation and Variance

Expectation of a random variable X with density p(x) is defined as

EX =

∫ ∞

−∞
xp(x)dx.

Generally,

Ef(X) =

∫ ∞

−∞
f(x)p(x)dx.

If X is a random variable in Rn,

Ef(X) =

∫
Rn

f(x)p(x)dx.

Variance of a random variable is defined as

Var(X) = E(X − EX)2.

Properties of expectation and variance

• Linearity of Expectation Suppose there are a sequence of random variablesX1, X2, · · · , Xn,

we have

E(X1 +X2 + · · ·+Xn) = EX1 + EX2 + · · ·+ EXn

• Association of Expectation of Independent Random Variable If X1 and X2 are inde-

pendent,

E [X1X2] = EX1 · EX2.

• Linearity of Variance for Independent Random Variables If X1, X2, · · · , Xn are inde-

pendent,

Var(X1 +X2 + · · ·+Xn) = Var(X1) + Var(X2) + · · ·+Var(Xn).

Lemma 1.0.2

Let X be a random variable and X ′ is an independent copy of X, i.e., X and X ′ are

iid. Then we have

Var(X) =
1

2
E(X −X ′)2.

1Ramon van Handel. Probability in High Dimension. https://web.math.princeton.edu/ rvan/APC550.pdf
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Some classical inequalities

Jensen’s inequality For any random variable and a convex function ϕ : R → R, we have

φ(EX) ≤ Eφ(X).

Lemma 1.0.3: Integral identity

Let X be a non-negative random variable, then

EX =

∫ ∞

0

P{X > t}dt.

Proof. Any non-negative real number x can be expressed as

x =

∫ x

0

1dt =

∫ ∞

0

1{x>t}dt.

By the definition of expectation

EX =

∫ ∞

0

∫ ∞

0

p(x)1{x>t}dtdx

=

∫ ∞

0

∫ ∞

0

p(x)1{x>t}dxdt

=

∫ ∞

0

∫ ∞

t

p(x)dxdt

=

∫ ∞

0

P{X ≥ t}dx.

Theorem 1.0.4: Markov’s inequality

For any non-negative random variable X and t > 0, we have

P{X ≥ t} ≤ EX
t

.

Proof.

EX =

∫ ∞

0

xp(x)dx =

∫ t

0

xp(x)dx+

∫ ∞

t

xp(x)dx

x≥0

≥
∫ ∞

t

xp(x)dx
x≥t

≥ t

∫ ∞

t

p(x)dx = tP{X ≥ t}.
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Theorem 1.0.5: Chebyshev’s inequality

Let X be a random variable with mean µ and variance σ2. Then, for any t > 0, we

have

P{|X − µ| ≥ t} ≤ σ2

t
.

Proof. Denote Z := (X − µ)2. Since Z ≥ t is equivalent to |X − µ| ≥ t, we have

P{|X − µ| ≥ t} = P{Z ≥ t} ≤ EZ
t

.

The last inequality is a result of Markov’s inequality.

Note that EZ = E(X − EX)2 = σ2, we finish the proof.

Lemma 1.0.6: Tower rule

Let X and Y be two random variables with distributions pX and pY , respectively.

Then, we have

EX [X] = EY [EX [X|Y ]] .

Proof.

EY [EX [X|Y ]] =

∫
Y

p(y)

[∫
X

xp(x|y)
]
dxdy

=

∫
X

x

[∫
Y

p(y)p(x|y)dy
]
dx

=

∫
X

xp(x)dx = EX [X]

Integration in high-dimensional spaces

For simplicity, we take a bounded function f : [0, 1]d → R as an example to calculate the

integral ∫
[0,1]d

f(x)dx.

Given resolution at ϵ > 0, the grid method takes (1/ϵ)d points over the d-dimensional space

[0, 1]d, which suffers in high dimensionality.

Monte-Carlo’s Method. Alternatively, we solve this problem in a probabilistic way.

Define a random variable X over the d- dimensional space [0, 1]d, with density

p(x) =

{
1,x ∈ [0, 1]d

0,x /∈ [0, 1]d

Obviously, we have ∫
[0,1]d

f(x)dx = Ef(X).
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Draw a sequence of iid random variables (X1, X2, . . . , Xn) from p with sample size n,

and take the sample average as

1

n

n∑
i=1

f(Xi).

Hopefully, we want ∫
[0,1]d

f(x)dx = Ef(X) ≈ 1

n

n∑
i=1

f(Xi).

Is it a good estimator? We measure the error by

E

(
1

n

n∑
i=1

f(Xi)− Ef(X)

)2

(Q: why do we take the expectation?)

E

(
1

n

n∑
i=1

f(Xi)− Ef(X)

)2

=E

(
1

n

n∑
i=1

(f(Xi)− Ef(X))

)2

=Var

(
1

n

n∑
i=1

f(Xi)

)
(def. of var.)

=
1

n2

n∑
i=1

Var(f(Xi)) (iid of Xi)

=
1

n
Var(f(X))

=
1

n
E (f(X)− Ef(X))

2 ≤ 1

n
2M2 (suppose |f | ≤ M)

By concavity of
√
· and Jensen’ inequality, we have

E

∣∣∣∣∣ 1n
n∑

i=1

f(Xi)− Ef(X)

∣∣∣∣∣ ≤
√√√√E

(
1

n

n∑
i=1

f(Xi)− Ef(X)

)2

≤ M

√
2

n
.

Hence,

E

∣∣∣∣∣ 1n
n∑

i=1

f(Xi)− Ef(X)

∣∣∣∣∣ ≲ 1√
n
,

where we use the symbol “≲” to hide to quantities independent of n.

The error is INDEPENDENT OF DIMENSION. The result is not obtained for free.

We have made compromises to derive an upper bound for the error, ON AVERAGE.
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