Lecture 2

Approximate Caratheodory’s

Theorem

Convex sets and convex hulls

Definition 2.0.1: Convex sets

Let S C R%. S is a convex set if
A+ (1-Ny€eS,

for any @,y € S and A € [0, 1].

We call z is a convex combination of {1, xs,- - ,x,} if there exists A = ();) € R"
such that N
z = Z )\1113,
i=1

satisfying > A; = 1 and A\; > 0 for all 4.
i=1

1=

Definition 2.0.2: Convex hulls

Let S C R%. We call a set convex hull of S, denoted by conv(S) if any element of
this set, can be expressed as a convex combination of points from §. Mathematically,

for any z € conv(S), there exists a sequence {z;}?; C S for n € N such that

n

z = Z)\Z:cl

i=1

satisfying > A; = 1 and A\; > 0 for all 4.
i=1
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Remark.

The convex hull conv(S) is the smallest convex set that contains S, in the sense that

conv(S) is a subset of any convex set that contains S.

Caratheodory’s theorem and approximated Caratheodory’s

theorem
Theorem 2.0.3: Caratheodory’s theorem

Every point in the convex hull of a set S C R? can be expressed as a convex combi-

nation of at most d 4+ 1 points from S.

Caratheodory’s theorem tells us the worst-case number of points needed to represent an
element of a convex hull. Such worst-case number is dimensional-dependent and apparently
cannot be improved.

What if we approximate z € conv(S) rather than exactly represent it as a convex
combination of points from S. We show that such approximation lead to the number of

points needed for representation does not depend not the dimension d.
Theorem 2.0.4: Approximate Caratheodory’s theorem

Consider a bounded set S C R, i.e., there exists r > 0 for any z € S, ||z|| < r.
For every point x € conv(S) and every integer k, there exists a sequence of points
(z;)%_, C S such that

Proof. Without loss of generality we assume that ||z|| < 1 for any z € S.
Let € conv(S), then there exists a sequence of points (z;)?; forn € Nand n <d+1

such that .
r = Z )\izi
i=1

satisfying Z A;=1and \; > 0.
i=1
Since A = (\;) belongs to the probability simplex, we define a discrete probability

distribution of a random variable Z as follows
P{Z = Zz'} = >\i,

with expectation EZ = «.
Generating a family of iid random variables from this distribution (71, Za, ..., Z;) for
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k € N, we obtain their sample average as

k
Z Zia
=1

| =

and

We measure the derivation of the sample average from its expectation by

2
E

1 k
- ZZ'—QJ

Since Z; are iid and deriving from the inequality E||Z — EZ|3 < E||Z||3 (Check by

2

Yourself) for a d-dimensional random variable, we have

k 2 k 2
1 1
E EZZi_w =E EZ(Zi—w)
=1 2 i=1 2
1< ’
= =E > (Zi—=)
=1 2

k
1
=2 ZEHZi —zl3
=1

k
1
< 5 Y EIZil3
=1

1

<- (|Zl].<1
<t (Zl<D)

By concavity of /- and Jensen’s inequality, we obtain

k
1 1 1
E\-Y Zi—a|| <\[E|-Y Z 2| <~
k =1 2 k 1=1 2 \/E
Here there exists a realization of (Z1, Za, ..., Z)) denotes as (1, ®a, ..., xx) such that
k

1 1
;g%*mf*z

Remark.

Such realization is built from components of a convex combination of & and repetitions

are allowed.
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An application of approximated Caratheodory’s theorem

Definition 2.0.5: Covering numbers

The covering number of a set 7 C R? is the smallest number of Euclidean balls of
radius € needed to cover 7T, denoted by N (T, e).

Remark.

e Covering numbers measure the complexity of 7.
e They suffer from the dimension d.

e Let the centers of a set of Euclidean balls with radius € be {¢;}. Mathematically,
we say these Euclidean balls cover T, if for any « € T, there exists ¢ € {¢;} such
that

|l —cil| <e.

Proposition 2.0.6

Let B:= {z € R?: ||z||2 < 1} be a unit Euclidean ball, for any 0 < € < 1 we have

N(B,e) > (1>d.

€

Proof. Let vol(B) denote the volume of B and vol(eB) denote the volume Euclidean ball of

radius €.
By the definition of covering numbers, we have

vol(B) < N(B,¢) - vol(eB) = N(B,¢) - €* - vol(B).

Hence, N(B,¢) > (%)d. O

The proposition shows that the covering numbers of the unit Euclidean ball grows ex-

ponentially in dimensionality. Is there any set whose covering number is dimension-free?

Theorem 2.0.7: Covering numbers of Polytopes

Let P C R? be a polytope with m vertices and diam(P) < r. Then P can be

2
covered by at most ml =1 Euclidean balls of radius € > 0, i.e.,

7,,2
N(P,e) <mlel,

adiam(P) = sup7;7 |z — yl|2
x,yc

Proof. Without loss of generality we assume that diam(P) < 1 and 0 belongs to the inside
of P.
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Let T = (z;)!, be the vertices of P. Note that P is a subset of conv(7) and T is
bounded by 1.

By the approximate Caratheodory’s theorem, for any & € conv(7), there exists a se-
quence of vertices (z;; )3?:1 and z;; € T, such that

1
||33_E E zi;||l2 < —=, for any k€ N. (ACT)
Let ﬁ <e€ k> 6%, and take K = ]—E%]

K
Denote N = ¢ + Y z;, : 2z, € T p. The cardinality of N takes |N| = m¥.
j=1

Let all elements of A be the centers of Euclidean balls with radius of . By (ACT), the
union of these balls covers conv(7T), and hence P.

Therefore the smallest number of Euclidean balls with radius € needed to cover P is less

than m*.

In summary N(P,e) < mf = mll, O
The following theorem shows an application of the above reslut.
Theorem 2.0.8: Volume of Polytopes

Let B C R? be the unit Euclidean ball , and P C B be a polytope with m vertices.
Then 4

vol(P) <4 [logm .

vol(B) — d

Proof. Let eB denote the Euclidean ball with radius € > 0. By the definition of covering

numbers, we have

vol(P) < N(P,€) - vol(eB) " #2TPo < [ e yol(B).

H
enee vol(P)

vol(B)

Sm[?]-edgme%-ed

Minimizing the right hand side w.r.t. € gives

d d
d 4logm logm

<ez <|4 .
vol(B) = ¢ ( d ) ( d )

Remark.

Let § = 41/'8™  then vol(P) < % - vol(B) = vol(6B). If the dimensionality d is
sufficiently large, the volume of a convex polytope with its vertices on the surface of a
unit Euclidean is smaller that a tiny ball 45.
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