
Lecture 2

Approximate Caratheodory’s

Theorem

Convex sets and convex hulls

Definition 2.0.1: Convex sets

Let S ⊆ Rd. S is a convex set if

λx+ (1− λ)y ∈ S,

for any x,y ∈ S and λ ∈ [0, 1].

We call z is a convex combination of {x1,x2, · · · ,xn} if there exists λ = (λi) ∈ Rn

such that

z =

n∑
i=1

λixi

satisfying
n∑

i=1

λi = 1 and λi ≥ 0 for all i.

Definition 2.0.2: Convex hulls

Let S ⊆ Rd. We call a set convex hull of S, denoted by conv(S) if any element of

this set, can be expressed as a convex combination of points from S. Mathematically,

for any z ∈ conv(S), there exists a sequence {xi}ni=1 ⊆ S for n ∈ N such that

z =

n∑
i=1

λixi

satisfying
n∑

i=1

λi = 1 and λi ≥ 0 for all i.
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Remark.

The convex hull conv(S) is the smallest convex set that contains S, in the sense that

conv(S) is a subset of any convex set that contains S.

Caratheodory’s theorem and approximated Caratheodory’s

theorem

Theorem 2.0.3: Caratheodory’s theorem

Every point in the convex hull of a set S ⊆ Rd can be expressed as a convex combi-

nation of at most d+ 1 points from S.

Caratheodory’s theorem tells us the worst-case number of points needed to represent an

element of a convex hull. Such worst-case number is dimensional-dependent and apparently

cannot be improved.

What if we approximate z ∈ conv(S) rather than exactly represent it as a convex

combination of points from S. We show that such approximation lead to the number of

points needed for representation does not depend not the dimension d.

Theorem 2.0.4: Approximate Caratheodory’s theorem

Consider a bounded set S ⊂ Rd, i.e., there exists r > 0 for any z ∈ S, ∥z∥ ≤ r.

For every point x ∈ conv(S) and every integer k, there exists a sequence of points

(xj)
k
j=1 ⊂ S such that ∥∥∥∥∥∥x− 1

k

k∑
j=1

xj

∥∥∥∥∥∥
2

≤ r√
k
.

Proof. Without loss of generality we assume that ∥z∥ ≤ 1 for any z ∈ S.
Let x ∈ conv(S), then there exists a sequence of points (zi)

n
i=1 for n ∈ N and n ≤ d+ 1

such that

x =

n∑
i=1

λizi

satisfying
n∑

i=1

λi = 1 and λi ≥ 0.

Since λ = (λi) belongs to the probability simplex, we define a discrete probability

distribution of a random variable Z as follows

P{Z = zi} = λi,

with expectation EZ = x.

Generating a family of iid random variables from this distribution (Z1, Z2, . . . , Zk) for
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k ∈ N, we obtain their sample average as

1

k

k∑
i=1

Zi,

and

E

[
1

k

k∑
i=1

Zi

]
= x.

We measure the derivation of the sample average from its expectation by

E

∥∥∥∥∥1k
k∑

i=1

Zi − x

∥∥∥∥∥
2

2

Since Zi are iid and deriving from the inequality E∥Z − EZ∥22 ≤ E∥Z∥22 (Check by

Yourself) for a d-dimensional random variable, we have

E

∥∥∥∥∥1k
k∑

i=1

Zi − x

∥∥∥∥∥
2

2

= E

∥∥∥∥∥1k
k∑

i=1

(Zi − x)

∥∥∥∥∥
2

2

=
1

k2
E

∥∥∥∥∥
k∑

i=1

(Zi − x)

∥∥∥∥∥
2

2

=
1

k2

k∑
i=1

E∥Zi − x∥22

≤ 1

k2

k∑
i=1

E∥Zi∥22

≤ 1

k
(∥Zi∥2 ≤ 1)

By concavity of
√
· and Jensen’s inequality, we obtain

E

∥∥∥∥∥1k
k∑

i=1

Zi − x

∥∥∥∥∥
2

≤

√√√√E

∥∥∥∥∥1k
k∑

i=1

Zi − x

∥∥∥∥∥
2

2

≤ 1√
k
.

Here there exists a realization of (Z1, Z2, . . . , Zk) denotes as (x1,x2, . . . ,xk) such that∥∥∥∥∥1k
k∑

i=1

xi − x

∥∥∥∥∥
2

≤ 1√
k
.

Remark.

Such realization is built from components of a convex combination of x and repetitions

are allowed.
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An application of approximated Caratheodory’s theorem

Definition 2.0.5: Covering numbers

The covering number of a set T ⊂ Rd is the smallest number of Euclidean balls of

radius ϵ needed to cover T , denoted by N(T , ϵ).

Remark.

• Covering numbers measure the complexity of T .

• They suffer from the dimension d.

• Let the centers of a set of Euclidean balls with radius ϵ be {ci}. Mathematically,

we say these Euclidean balls cover T , if for any x ∈ T , there exists ck ∈ {ci} such

that

∥x− ck∥ ≤ ϵ.

Proposition 2.0.6

Let B := {x ∈ Rd : ∥x∥2 ≤ 1} be a unit Euclidean ball, for any 0 < ϵ < 1 we have

N(B, ϵ) ≥
(
1

ϵ

)d

.

Proof. Let vol(B) denote the volume of B and vol(ϵB) denote the volume Euclidean ball of

radius ϵ.

By the definition of covering numbers, we have

vol(B) ≤ N(B, ϵ) · vol(ϵB) = N(B, ϵ) · ϵd · vol(B).

Hence, N(B, ϵ) ≥
(
1
ϵ

)d
.

The proposition shows that the covering numbers of the unit Euclidean ball grows ex-

ponentially in dimensionality. Is there any set whose covering number is dimension-free?

Theorem 2.0.7: Covering numbers of Polytopes

Let P ⊂ Rd be a polytope with m vertices and diam(P) ≤ r.a Then P can be

covered by at most m⌈ r2

ϵ2
⌉ Euclidean balls of radius ϵ > 0, i.e.,

N(P, ϵ) ≤ m⌈ r2

ϵ2
⌉.

adiam(P) = sup
x,y∈P

∥x− y∥2

Proof. Without loss of generality we assume that diam(P) ≤ 1 and 0 belongs to the inside

of P.
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Let T = (zi)
m
i=1 be the vertices of P. Note that P is a subset of conv(T ) and T is

bounded by 1.

By the approximate Caratheodory’s theorem, for any x ∈ conv(T ), there exists a se-

quence of vertices (zij )
k
j=1 and zij ∈ T , such that

∥x− 1

k

k∑
j=1

zij∥2 ≤ 1√
k
, for any k ∈ N. (ACT)

Let 1√
k
≤ ϵ, k ≥ 1

ϵ2 , and take K = ⌈ 1
ϵ2 ⌉.

Denote N =

{
1
K

K∑
j=1

zij : zij ∈ T

}
. The cardinality of N takes |N | = mK .

Let all elements of N be the centers of Euclidean balls with radius of ϵ. By (ACT), the

union of these balls covers conv(T ), and hence P.

Therefore the smallest number of Euclidean balls with radius ϵ needed to cover P is less

than mK .

In summary N(P, ϵ) ≤ mK = m⌈ 1
ϵ2

⌉.

The following theorem shows an application of the above reslut.

Theorem 2.0.8: Volume of Polytopes

Let B ⊂ Rd be the unit Euclidean ball , and P ⊂ B be a polytope with m vertices.

Then

vol(P)

vol(B)
≤

(
4

√
logm

d

)d

.

Proof. Let ϵB denote the Euclidean ball with radius ϵ > 0. By the definition of covering

numbers, we have

vol(P) ≤ N(P, ϵ) · vol(ϵB) cov. # of poly.
= ≤ m⌈ 1

ϵ2
⌉ · ϵd · vol(B).

Hence
vol(P)

vol(B)
≤ m⌈ 1

ϵ2
⌉ · ϵd ≤ m

2
ϵ2 · ϵd

Minimizing the right hand side w.r.t. ϵ gives

vol(P)

vol(B)
≤ e

d
2

(√
4 logm

d

)d

≤

(
4

√
logm

d

)d

.

Remark.

Let δ = 4
√

logm
d , then vol(P) ≤ δd · vol(B) = vol(δB). If the dimensionality d is

sufficiently large, the volume of a convex polytope with its vertices on the surface of a

unit Euclidean is smaller that a tiny ball δB.
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