
Lecture 1

Mathematically Preliminaries

Optimization in Data Science

Learning = Representation+Evaluation+Optimization1

Linear RegressionGiven data points D = {xi, yi}ni=1 drawn from an unknown distribution

P(X ,Y) over the support X ×Y ⊂ Rd ×R. Linear regression aims to find a linear function

f : X → Y such that for any (x, y) ∼ P(X ,Y) we have f(x) = y. Suppose the linear

function has the form f(x) = wTx+ b, the parameters w ∈ Rd and b ∈ R can be found by

solving the following optimization problem:

min
w,b

1

n

n∑
i=1

(wTxi + b− yi)
2. (1.1)

We denote the objective function as L(w, b;D) known as the mean-squared error (MSE)

loss in machine learning.

There are multiple common forms for linear regression:

min
w,b

L(w, b;D) (Least Squares Regression)

min
w,b

L(w, b;D) + λ

d∑
k=1

w2
k︸ ︷︷ ︸

Smooth penalty

(Ridge Regression)

min
w,b

L(w, b;D) + λ

d∑
k=1

|wk|︸ ︷︷ ︸
Non-smooth penalty

(Lasso Regression)

min
w,b

L(w, b;D) + λ1

d∑
k=1

|wk|+ λ2

d∑
k=1

w2
k (Elastic-Net)

1Pedro Domingos. 2012. A few useful things to know about machine learning. Commun. ACM 55, 10
(October 2012), 78–87. https://doi.org/10.1145/2347736.2347755

1



LECTURE 1. MATHEMATICALLY PRELIMINARIES 2

Question 1.0.1

• Why the intercept b is not included in the penalty?

• How does the linear parameter w behave differently in different forms of re-

gression? Alternatively, why should we add such penalties in regression?

One-Time Graph Cut Given a graph G(V,E) and its adjacent matrix W = (wij) ∈
{0, 1}n×n, the one-time graph cut partitions vertices of G into to disjoint subsets A and Ā

such that they have minimum number of edges in between.

Definition 1.0.2: Cut

Given two disjoint subsets of vertices A and B, the cut between A and B is defined

as

cut(A,B) =
∑

u∈A,v∈B

wuv. (Graph Cut)

By definition of graph cut, the one-time graph cut problem becomes

Find a subset A ⊂ V sucht that cut(A, Ā) attains its minimum.

We define the a vector f = (fi)
n
i=1 as

fi =

{
1 , if i ∈ A

− 1 , if i ∈ Ā
(1.2)

Define a diagonal matrix D ∈ Rn×n with its element as dii =
n∑

j=1

wij . Hence

# Edges within V =

n∑
i,j=1

wij =

n∑
i=1

dii =

n∑
i=1

f2
i dii = fTDf .

For any vertex i, the number of edges between vertex i and its counterpart subset ī(i.e.

i /∈ ī) can be expressed

1

2
(dii −

n∑
j=1

fifjwij).
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So we can write the cut between A and Ā as

cut(A, Ā) =
∑

u∈A,v∈Ā

wuv =
1

2

∑
u∈A

∑
v∈Ā

wuv +
∑
u∈Ā

∑
v∈A

wuv


=

1

2

∑
u∈V

∑
v∈ū

wuv =
1

4

n∑
i=1

dii −
n∑

j=1

fifjwij


=

1

4

fTDf −
n∑

i=1

n∑
j=1

fifjwij

 =
1

4

(
fTDf − fTWf

)
=

1

4
fT (D −W )f

Let L := D −W , the one-time graph cut problem can be formulated as

min
f

fTLf

s.t.f ∈ {−1, 1}n
(One-Time Graph Cut)

The matrix L is known as the Laplacian matrix of the graph G.

Question 1.0.3

• How can we generalize it to multiple cuts? Check out ratio cuts and normalized

cuts.

• How can we connect the graph cuts with spectral clustering?

Optimal Transport Consider a market with m sellers and n buyers. Let the supply

vector of sellers be denoted by a ∈ Rm, where each element represents the supply of a

particular seller, and the demand vector of buyers be denoted by b ∈ Rn, where each

element corresponds to the demand of a particular buyer. The transportation cost between

seller i and buyer j is given by cij . Suppose the quantity transported from seller i to buyer

j is given by pij , optimal transport seeks to determine a transport plan P = (pij) ∈ Rm×n
+

that minimizes the total transportation cost while satisfying the supply-demand constraints.

The total cost is
m∑
i=1

n∑
j=1

cijpij . The optimal transport problem can be expressed as in

matrix form
min

P∈Rm×n
+

⟨P ,C⟩

s.t. P1n = a,

P T1m = b.

(Discrete Optimal Transport)

where 1n and 1m denote all-one vectors of length n and m, respectively. The inner product

between matrices is defined as ⟨P ,C⟩ = tr(P TC) =
m∑
i=1

n∑
j=1

cijpij .
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Question 1.0.4

• Find you find some applications of optimal transport in economics?

• Optimal transport is a valuable tool in non i.i.d machine learning applications,

such as transfer learning and multi-modal learning, for data alignment. Con-

sider reading some of the papers that are most relevant to your interests.

Inner Products and Norms

Definition 1.0.5: Inner Product

An inner product on Rd is map ⟨·, ·⟩ : Rd × Rd → R with the following properties:

1. (symmetry) ⟨x,y⟩ = ⟨y,x⟩ for any x,y ∈ Rd.

2. (additivity) ⟨x,y + z⟩ = ⟨x,y⟩+ ⟨x, z⟩ for any x,y, z ∈ Rd.

3. (homogeneity) ⟨λx,y⟩ = λ⟨x,y⟩ for any λ ∈ R and x,y ∈ Rd.

4. (positive definitiness) ⟨x,x⟩ ≥ 0 for any x ∈ Rd and ⟨x,x⟩ = 0 iff. x = 0.

The dot-product is defined as ⟨x,y⟩ =
d∑

i=1

xiyi for any x,y ∈ Rd.

The definition of inner product only provide properties that it should be satisfied, but

it does not involve how we calculate an inner product. Hence, the dot product is not the

only possible product.

Question 1.0.6

Given a matrix A ∈ Rd×d, we define a map ⟨·, ·⟩A : Rd × Rd → R as

⟨x,y⟩A = xTAy.

Is the map an inner product? Can you define an inner product in a similar form?

Definition 1.0.7: Norm

A norm on Rd is a function ∥ · ∥ : Rd → R satisfying the following

1. (nonnegativity) ∥x∥ ≥ 0 for any x ∈ Rd.

2. (positive homogeneity) ∥λx∥ = |λ|x for any x ∈ Rd and λ ∈ R.

3. (triangle inequality) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for any x,y ∈ Rd.
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Example.

Euclidean norm: ∥x∥2 =

√
d∑

i=1

x2
i =

√
⟨x,x⟩.

ℓp-norms: ∥x∥p = p

√
d∑

i=1

|xi|p(p ≥ 1)

ℓ∞-norm: ∥x∥∞ = max
i=1,...,d

|xi|.

Question 1.0.8

Show that ∥x∥∞ = lim
p→∞

∥x∥p (Hint: Reduce from right)

The Cauchy-Schwartz inequality shows the relationship between a inner product and its

induced norm.

Lemma 1.0.9: Cauchy-Schwartz inequality

For any x,y ∈ Rd,

|⟨x,y⟩| ≤ ∥x∥∥y∥.

Equality holds iff. x and y are linear dependent.

Similar to vector norms, we define that matrix norms as

Definition 1.0.10:

A norm on Rm×n is a function ∥ · ∥ : Rm×n → R satisfying the following

1. (nonnegativity) ∥A∥ ≥ 0 for any A ∈ Rm×n.

2. (positive homogeneity) ∥λA∥ = |λ|A for any A ∈ Rm×n and λ ∈ R.

3. (triangle inequality) ∥A+B∥ ≤ ∥A∥+ ∥B∥ for any A,B ∈ Rm×n.

Matrix norms can be generated from vector norms. Specifically, given two norms ∥ · ∥a
and ∥ · ∥b on Rn and Rm, respectively, the induced matrix norm on Rm×n is defined as

∥A∥a,b = max
x∈Rn

{∥Ax∥b : ∥x∥a ≤ 1}. (Induced Matrix Norm)

If a = b, we simplify the notation ∥ · ∥a,a as ∥ · ∥a.
From (Induced Matrix Norm), we can show that

∥Ax∥b ≤ ∥A∥a,b∥x∥a.
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Example.

1. (spectral norm)

∥A∥2 = max
x∈Rn

{∥Ax∥2 : ∥x∥2 ≤ 1} =

√
λmax(A

TA)

2. (1-norm: Maximum absolute column sum norm)

∥A∥1 = max
x∈Rn

{∥Ax∥1 : ∥x∥1 ≤ 1} = max
j=1,2,...,n

∑
i=1

|Aij |

3. (∞-norm: Maximum absolute row sum norm)

∥A∥∞ = max
x∈Rn

{∥Ax∥∞ : ∥x∥∞ ≤ 1} = max
i=1,2,...,n

∑
j=1

|Aij |

There are several norms that are not induced matrix norms in the literature.

Example.

1. (Frobenius norm)

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

A2
ij =

√
tr(ATA)

2. (L1 norm)

∥A∥1 =

m∑
i=1

n∑
j=1

|Aij |

3. (L2,1 norm)

∥A∥2,1 =

n∑
j=1

√√√√ m∑
i=1

A2
ij

4. (Nuclear norm)

∥A∥∗ = tr(ATA) =

min{m,n}∑
i=1

σi(A),

where σi(A) is the singular value of A.

L2,1-norm and nuclear norm control the structure of a matrix, hence, they are favorable

in high-dimensional analysis and machine learning for structure learning , e.g. Robust PCA,

matrix completion.

Question 1.0.11

For a matrix A of rank at most r, show that

∥A∥2 ≤ ∥A∥F ≤ ∥A∥∗ ≤
√
r∥A∥F ≤ r∥A∥2.
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Differentiability

Definition 1.0.12: Directional derivative

Let f be a real-valued function defined on a set S ⊆ Rd. Let x ∈ int(S) and let d

be any non-zero vector. If the limit

lim
t→0+

f(x+ td)− f(x)

t

exists, then it is called the directional derivation of f at x along the direction d and

is denoted by f ′(x;d).

If the limit

lim
t→0

f(x+ tei)− f(x)

t

exists, we can it the i-th partial derivative of f at x and write it as ∂f
∂xi

(x).

If all the partial derivatives exist of f at x, we call the their column vector gradient and

denote as ∇f(x), i.e.,

∇f(x) =

(
∂f

∂x1
(x),

∂f

∂x2
(x), · · · , ∂f

∂xd
(x)

)T

A function f defined on an open set U ⊆ Rd is called continuously differentiable over U
is all its partial derivatives exist and are continuous on U for any x ∈ Rd. In such case, we

have

f ′(x;d) = ∇f(x)Td,

from that fact that

f ′(x;d) =
∂f(x+ τd)

∂τ

∣∣∣
τ=0

=

d∑
i=1

∂f(x+ τd)

∂xi
di

∣∣∣
τ=0

= ⟨∇f(x),d⟩.

Theorem 1.0.13: Taylor’s Theorem

Suppose that f : U → R is continuously differential over an open set U ⊆ Rd and for

and d ∈ Rd we have

f(x+ d) = f(x) +∇f(x+ td)Td,

for some t ∈ (0, 1) and any x ∈ U

Proof. Let g(τ) = f(x+ τd). By the mean-value theorem we have

g(1)− g(0) = g′(t),

for some t ∈ (0, 1).

Since

g′(t) = f ′(x+ τd)|τ=t = ∇f(x+ td)Td
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by definition of gradient we complete the proof.

Proposition 1.0.14

Suppose that f : U → R is continuously differential over an open set U ⊆ Rd . Then

lim
d→0

f(x+ d)− f(x)−∇f(x)Td

∥d∥
= 0,

for all x ∈ U .

Proof. By assumption, for any unit vector v ∈ Rn we have

f ′(x;v) = ∇f(x)Tv,

Hence

lim
t→0+

f(x+ tv)− f(x)− t∇f(x)Tv

t
= 0,

Let d = tv. The above equality is equivalent to

lim
d→0

f(x+ d)− f(x)−∇f(x)Td

∥d∥
= 0,

The proposition implies that

f(y) = f(x) +∇f(x)T (y − x) + o(∥x− y∥)

for any x,y ∈ U , where o(∥x− y∥) is a higher order infinitesimal of ∥x− y∥.
The (i, j)-th partial derivatives of f at x ∈ Rd is defined by

∂2f

∂xi∂xj
(x) =

∂
(

∂f
∂xj

)
∂xi

(x).

We call a real-valued function twice continuously differentiable if all its partial derivatives

exist and are continuous. In such case, we have

∂2f

∂xi∂xj
(x) =

∂2f

∂xj∂xi
(x).

The Hessian matrix of f at x is denoted by

∇2f(x) =

(
∂2f

∂xi∂xj
(x)

)
i,j

.
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Theorem 1.0.15: Taylor’s Theorem (Continued)

If f is twice continuously differentiable, we have

∇f(x+ d) = ∇f(x) +

∫ 1

0

∇2f(x+ τd)ddτ

and

f(x+ d) = f(x) +∇f(x)Td+
1

2
dT∇2f(x+ td)d

for some t ∈ (0, 1).

The gradient can also be defined from Fréchet differentiability.

Definition 1.0.16: Fréchet differentiability

Let f : S → R be defined over S ⊆ R, and x ∈ int(S). Then function is said to be

differentiable at x if there exists a vector g such that

lim
d→0

f(x+ d)− f(x)− gTd

∥d∥
= 0.

The unique vector g satisfying the equality is call gradient f at x and it is denoted

by ∇f(x).

The definition of the gradient is consistent with the one we defined earlier.

Optimality Conditions for Unconstrained Optimization

Definition 1.0.17: Global and local minimum

Let f : S → R be defined over a set S ⊆ Rd. Then

1. We call x∗ a (strict) global minimum point of f over S if f(x∗) ≤ (<)f(x) for

any x ∈ S.

2. We call x∗ a (strict) local minimum point of f over S if there exists r > 0 such

that f(x∗) ≤ (<)f(x) for any x ∈ B(x∗, r).

The set of global minimum point of f over S is represented by

argmin
x∈S

f(x).

The open ball B(x∗, r) denotes the set {x ∈ Rd
∣∣∥x∗ − x∥ ≤ r}.
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Theorem 1.0.18: First order optimality condition for local min-

imum points

Let f : S → R be defined over S ⊆ Rd. Suppose that x∗ ∈ int(S) is a local minimum

point and that ∇f(x∗) exists. Then ∇f(x∗) = 0.

Proof. By assumption, ∂f(x∗)
∂xi

exists for all i = 1, . . . , d. Define g(t) = f(x∗+tei) and since

x∗ ∈ int(S), there exists r > 0 such that t ∈ (−r, r). We have t = 0 is a local minimum

point of g(t) by local optima of x∗. As g′(0) exits, hence g′(0) = ∂f(x∗)
∂xi

. Such claim holds

for all i, we have ∇f(x∗) = 0.

Definition 1.0.19: Stationary points

Let f : S → R be defined over S ⊆ Rd. Suppose that x∗ ∈ int(S) and that f is

differentiable over some neighborhood of x∗. Then x∗ is called a stationary point of

f if ∇f(x∗) = 0.

Theorem 1.0.20: Necessary second order optimality conditions

Let f : S → R be defined over S ⊆ Rd. Suppose that f is twice continuously

differentiable over S and x∗ is a stationary point. Then the following hold

(a) If x∗ is a local minimum point of f over S, then ∇2f(x∗) ≽ 0;

(b) If x∗ is a local maximum point of f over S, then ∇2f(x∗) ≼ 0;

Theorem 1.0.21: Sufficient second order optimality condition

Let f : S → R be defined over S ⊆ Rd. Suppose that f is twice continuously

differentiable over S and x∗ is a stationary point. Then the following hold:

(a) If ∇2f(x∗) ≻ 0, then x∗ is a strict local minimum point of f over S.

(b) If ∇2f(x∗) ≺ 0, then x∗ is a strict local maximum point of f over S.

Definition 1.0.22: Saddle point

Let f : S → R be defined over S ⊆ Rd. Suppose that f is continuously differentiable

over S. A stationary point x∗ is called a saddle point of f over S if its not a local

optimal point of f over S
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Theorem 1.0.23: Sufficient condition for a saddle point

Let f : S → R be defined over S ⊆ Rd. Suppose that f is twice continuously

differentiable over S and x∗ is a stationary point. If ∇2f(x∗) is an indefinite matrix,

then x∗ is a saddle point f over S.

Attainable of Optimal

When we try find a global minimum/maximum point of a function, we need to be sure of

its existence. Weierstrass theorem provides such guarantee for a continuous function over a

compact set.

Theorem 1.0.24: Weierstrass theorem

Let f be a continuous function defined over a nonempty and compact set C ⊆ Rd.

Then global optimal points over C are attainable.

The compact property is not necessary if the function f satisfies coerciveness.

Definition 1.0.25: Coerciveness

Let f : Rd → R be a continuous function defined over Rd. Then the function f is

called coercive if

lim
∥x∥→∞

f(x) = ∞.

A coercive function always achieves its global minimum point over any closed set.

Theorem 1.0.26: Attainment under coerciveness

Let f : Rd → R be a continuous and coercive function and let S ⊆ Rd be a nonempty

closed set. Then f has a global minimum point over S.

Proof. Given x0 ∈ S, there exists M > 0 such that

f(x) > f(x0) for any x satisfying ∥x∥ > M,

by the coerciveness of f . Hence the level set Lx0 = {x ∈ Rd|f(x) ≤ f(x0)} is bounded and

also is closed by the continuity of f , i.e., Lx0
is a non-empty and compact set. And so is

S
⋂
Lx0

= {x ∈ S|f(x) ≤ f(x0)}. From Weierstrass theorem we know that there exists a

global minimum point of f over S
⋂

Lx0
. This point is also a global minimum point of f

over S.
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