Lecture 2

Smooth and Convex Functions

Classes of differentiable functions

Let S be a subset of R? and Cf’p (S) denote a family of functions satisfying

e Any f € Cf’p (S) is k times continuously differentiable over S.

e Its pth derivative is Lipschitz continuous on § with constant L, i.e.,

IVPf(x) = VPf(y)ll2 < Lll@ — yll2, for any 2,y € S.

In this course, the function class C;’' (S) is of particular interest and we call any f € ;' (S)
L-smooth on S.
The Lipschitz continuity controls the rate of changes and the following lemma shows the

fact in a special case.
Lemma 2.0.1
A function f : S € R? — R belongs to Ci’l(S) C Ci’l(S) iff. (if and only if)
|V2f(x)|| < L, for any = € S.
Proof. (=) If f € C7'(S), we have
IVf(x) = V(y)ll2 < Lllz - yll2, for any z,y € S.

Let y := = + ad for d € R¥\{0} and small o > 0.

IVF( + ad) — V()| = ]

/a V2f(z + 7d)ddr
0

< aLl|d|

For the inequality, dividing both sides by « and ||d|| yields

Jo V2 f(z + 7d)ddr
af|d||
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Taking o — 0%

Iy Vif(z + 7d)ddr

. Jy Vif(x+ td)ddr
1
ofd]|

lim
a—0+ a||d||

a—0t

d
= ||Vv2 H<L.
H F@)ar| =

By the definition of induced norm of matrices, we immediately have ||V2f(z)|| < L.
(«=) It is trivial by using the Newton-Leibniz formula

Vi(y) - Vi) = / V(@ + r(y — @) - (y — @)dr,

for any x,y € S. O

Smooth convex functions

Definition 2.0.2: Convex sets

Let S C R%. S is a convex set if
A+ (1-Ny €S,

for any @,y € S and A € [0, 1].

Definition 2.0.3: Differentiable convex function

A continuously differentiable function f is called convexr on a convex set S if for any
x,y € S we have

fy) = f(@)+(Vi(2),y — ).

Remark.

e For a differentiable convex function, the graph of the function always lies above (or

on) its tangent lines at any point

e The definition of convex functions is equivalent to

[z + (1= Ny) <Af(z) + (1= N f(y)

for any x,y € S and A € [0, 1], if f is defined and differentiable on the convex set
S.

e If —f is convex, we call f concave.



LECTURE 2. SMOOTH AND CONVEX FUNCTIONS

Theorem 2.0.4

A continuously differentiable function f is convex on a convex set S iff. for any x,y
we have

(Vf(x) = Vi(y),z—y)=0.

Proof. (=) It is trivial by the definition of differentiable convex functions.

(<) By the Newton-Leibniz formula, we have

fy) — fl) = / (Vi@ + 1y — @),y —z)dr
1
- / (Vi@ +r(y — @) — Vi(e) + Vi@)y - z)dr

- / (Vi@ +r(y — ) - Vf(@).y —2)dr + (Vf(@).y —z)

> (Vf(@),y —x).

Theorem 2.0.5

Let S be an open set. A twice continuously differentiable function f is convex iff.
for any & € S we have

V2f(x) > 0.
Proof. We skip the proof here.

Theorem 2.0.6: Sufficient condition for optimality

Suppose f : R* — R is L-smooth and convex. If Vf(x*) = 0 then z* is the global
minimum of f on RY.

Proof. We also skip the proof.
The following theorem shows the optimal condition on a subset of R?.

Theorem 2.0.7: Optimal condition on a closed and convex set

Let f: S € RY — R be continuously differentiable and convex. Suppose S is a closed

and convex set. Then a point * is a minimum point of f on § iif.
(Vf(x"),z—a") >0
for any « € S.
Proof. (=) Suppose there exists some &t € S such that

(Vf(x*),zt —x*) <0.
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By the definition of directional derivative, we have

o @+t —2%) - f(a)

t—0+ t

= (Vf(x"),zt —z*) <0.

Hence, for some small ¢y such that =* + to(z* — z*) € S,

fl@" +to(zt — %)) < f(z*)

which leads to contradiction with the optimal of x*.
(<) It is trivial. O

Theorem 2.0.8

Let f : R = R be L-smooth and convex. The following inequalities hold for any
x,y € R4,

Fly) < f(@) + (Vf(@)y — ) + 2l —yl3

VI @) ~ Vi@ < fw) ~ (@) — (Y @),y — )
Proof. To show the first inequality, we have

fw) -t = | (St rly - )y - @r
-/ (V@ rly — )~ V(@) + V@), a)dr
-/ (Vi@ 4y - 7)) — V@), y - )T + (Vi(@),y - 2)
</ 9SG+ 7y — @)~ V@) Iy - aldr + (7 (), y — =)
< [ wrly—alfer + (9s@.y -0
= Zlly - ol + (V) y ~ =),
which is rearranged as
f() < J@) + (VS(@)y —2) + 5o~ 93 (Upper-Bound)

To show the second inequality, we first take y = x — %V f(x) in (Upper-Bound) and
obtain

Sp VI @) < f(@) — f(@ — 7V f(@) for any @ € B

Let us fix  and define ¢(y) = f(y) — (Vf(x),y) for any y € R%. Note that ¢(2) is

L-smooth and convex, and hence

o= Vo) 3 < () — oy — 7 Vo(w))
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Since V¢(x) = 0, ¢ attains its minimum at . Therefore
S IVow)IB < oy) — 6 (v~ 1 Volw)
oL Yl = oY Yy I Y))-
< o(y) — o(x),
and we get the second inequality since Vo (y) = Vf(y) — Vf(x). O

Remark.

These two inequalities are important for convergence analysis of first-order methods.

We know that the convex functions are not necessarily to be differentiable.

Definition 2.0.9: Not-necessarily differentiable convex func-
tions

A function f is called convex on a convex set S if for any «,y € S we have
fOz+ (1 =Ny) <Af(x) + (1 =N f(y)
for any A € [0,1].

We have mentioned that these two definitions of convex functions are equivalent if f is
differentiable on S.

Lemma 2.0.10: Jensen’s inequality

Let f : S € RY — R be convex and S is a convex set. Then for any sequence of

(z;)_; € S and any n € N, we have
FQaim) <Y aif (@)
i=1 i=1

if Ya;=1land o; >0(: =1,2,...,n).
i=1

We call z is a convex combination of {x1,xs, - ,x,} if there exists A = ();) € R”
such that .
z = Z )\ixi
i=1

satisfying >> A; = 1 and \; > 0 for all 4.
i=1
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Definition 2.0.11: Convex hulls

Let S C RY. We call a set convex hull of S, denoted by conv(S) if any element of
this set, can be expressed as a convex combination of points from §. Mathematically,

for any z € conv(S), there exists a sequence {z;}?; C S for n € N such that
n
z = Z )\Zﬂ:i
i=1

satisfying >> A; =1 and \; > 0 for all 4.
i=1

K2

By Jensen’s inequality, we immediately reach the following lemma.

Lemma 2.0.12

Let f:R? — R be convex and S be a subset of R, Then we have

2 f(z) = max f(z).

Proof. Since S C conv(S), we have

X f(z) > max f(z).

For any z € conv(S), there exists a n € N and a sequence (x;)"_; C S such that
n
z = Z [e 7y 73
i=1

for some o; > 0(i =1,2,...,n) and > «o; = 1.
i=1
Therefore, by Jensen’s inequality

f(z) = f(z a; ;) < Zaif(:vi) < max f(x) Zai < max f(z).
i1 i1 P

For the arbitrariness of z € conv(S), we have

< .
A f(z) < max f(z)

O

We present in the following that the non-necessarily differentiable (NND) convex func-

tions are locally bounded and locally Lipschitz continuous.
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Theorem 2.0.13

Let f: S C RY — R be convex and xy € int(S). Then f is locally bounded, i.e.,
Je > 0 and M(xg,€) > 0 such that

f(x) < M(zxg,€) for any = € Ba(xg, €) := {x € R? : |2 — |2 < €}

Proof. Since xy € int(S), there exists ¢ > 0 such that f is defined on the hypercube
Boo (o, €) := {x € R%: || — xo||oo < €}, which is the convex hull of the set {xo + ee; }L,.
The symbol e; denotes the unit vector along coordinate <.

Therefore

max x) < max = max x) := M(xp,¢€),

zEB2(xo,€) f( ) - zEBs (xo,€) we{wgieei}le f( ) ( 0 )
where the first inequality attributes to the fact By (o, €) C Boo (0o, €) and the second equality
comes from Lemma 2.0.11. O

Theorem 2.0.14

Let f : S € R — R be convex and g € int(S). Then f is locally Lipschitz
continuous, i.e., 3¢ > 0 and M (zg,€) > 0 such that

[f(y) — f(o)| < M(zo, )|y — zoll2

for any y € Ba(xo,¢€) := {x € RY: ||z — o2 < €}

Proof. Since xy € int(S), there exists € > 0 such that f is defined on By(xg,€) := {x €
R [l — 20|z < €}

For y = xg, the result is trivial.

Suppose y # xg and y € Ba(xg, €). We extend the line segment connecting o and y so
that it intersect the boundary of Ba(xo, €). The intersection points are denoted by v and u,
respectively.

Define a = M We have

y=(1-a)xy+ av,
a n 1
= —u
1+« 1+«

o y.

By the convexity of f,
fly) < (L= a)f(wo) + af(v)

flw) € (W) + T f(w).

We rearrange as

F@o) — f() < alf(v) — flo)) < Y2 (0ray o)~ flag))

€

(@) - (o) < a(f(v) — f(o) < Y2 (ara o) — flao))

€
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by the fact that f is locally bounded by M (xo,€).
Let M (xg,€) = (M(xo,€) — f(x0)) /€, we complete the proof. O

Smooth and Strongly Convex Functions

Definition 2.0.15

A continuously differentiable function f : R? — R is called j-strongly convex on RY

if there exists a constant p > 0 such that for any ,y € R? we have

f@) 2 f@) + (Vi@),y - =) + Slly - I3

For a p-strongly convex function, we have
(Vf(@) = Vf(y),z—y) > ple -yl

Theorem 2.0.16

If f:R? — R is u-strongly convex, then for any x,y € R? we have

() < F@) + (V@) y— o)+ inwm _VIWIE
(Vf(x) - VI@y).z—y) < invm) — Vi),
ulz — yll2 < |V () - Viw)|3

Proof. We only show the first inequality here.

For any u,v € R?, we have
1
f(u) = f(v) + (Vf(v),u=v) + Jlu—v3,
which implies

min f(w) > min { f(v) +(Vf(0),u—v) + §lu -3

— f(w) - iuwmné.

Let fix some z € R? and define ¢(2) = f(z) — (Vf(x),2). Function ¢(z) is also p-

strongly convex, and therefore

mgl o(z) > o(y) — 2i||v¢(y)||§ for any y € R%. (Lower-Bounded)
z€Rd %

Note that V¢(x) = 0, we have m]iRI}l d(z) = o(x).
zE
Since Vo(y) = V f(y)—V f(x), substituting all the ingredients back to (Lower-Bounded)
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and arranging yield

) < f(@) + (V(x).y - ) + iuw«c) V@I

Theorem 2.0.17

If f:R?— R is p-strongly convex and L-smooth, then for any ,y € R? we have

(VH@) = VIw)o—9) 2 Lrlle —ylf+ 7 IV@) - VIS

Theorem 2.0.16 will be useful for the converge analysis of gradient descent. We skip the
proof here.

Theorem 2.0.18

Let f: S C R? = R be continuously differentiable and p-strongly convex on a closed

and convex §. Then the minimum point of f on S exists and is unique.

Proof. Let ¢y € S and define S = {x € S : f(x) < f(x0)}. Hence minimizing f on S is
equivalent to minimizing f on S.
We are going to show that S is bounded.

For any « € S, we have
F(@o) = f(@) = f(@o) + (VS (@0), @ = @0) + & @ — wol 3
which is rearranged as
g”fﬂ — a3 < (Vf(o),z — o) < [[Vf(zo)ll2]l& — o2

We use the Cauchy-Schwartz inequality in the last inequality and obtain
2
[z —xoll2 < ;HVf(CCo)Hz-

Hence S is bounded and is also closed by the fact that f is continuous on S.
Therefore, the minimum point of f on S exists and so does it on S.
Let * and «* be two minimum points of f on S.
We have
i > * \v4 * T H I )2
flah) > f@7) + (V@) 2 —2%) + et — a3,

By the fact that f(z*) = f(z*) and (Vf(x*), 2} — x*) > 0, we have

Lllat — 2|3 <o,
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which implies 2 = x*
Definition 2.0.19: Not-necessarily differentiable p-strongly
convex functions

A function f is called p-strongly convex on a convex set S if for any x,y € S we
have

FO@ + (1= Ny) < M(@) + 1= Nf(y) - 1= Nl - yl3

for any A € [0, 1].

If f is differentiable, the definition is equivalent to the differentiable version.
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