Lecture 2

Smooth and Convex Functions

Classes of differentiable functions

Let \mathcal{S} be a subset of \mathbb{R}^d and $\mathcal{C}_L^{k,p}(\mathcal{S})$ denote a family of functions satisfying

- Any $f \in \mathcal{C}_L^{k,p}(\mathcal{S})$ is k times continuously differentiable over \mathcal{S} .
- Its *p*th derivative is Lipschitz continuous on S with constant *L*, i.e.,

$$\|\nabla^p f(\boldsymbol{x}) - \nabla^p f(\boldsymbol{y})\|_2 \le L \|\boldsymbol{x} - \boldsymbol{y}\|_2$$
, for any $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{S}$.

In this course, the function class $C_L^{1,1}(S)$ is of particular interest and we call any $f \in C_L^{1,1}(S)$ *L-smooth* on S.

The Lipschitz continuity controls the rate of changes and the following lemma shows the fact in a special case.

Lemma 2.0.1

A function $f: \mathcal{S} \subset \mathbb{R}^d \to \mathbb{R}$ belongs to $\mathcal{C}_L^{2,1}(\mathcal{S}) \subset \mathcal{C}_L^{1,1}(\mathcal{S})$ iff. (if and only if)

 $\|\nabla^2 f(\boldsymbol{x})\| \leq L$, for any $\boldsymbol{x} \in \mathcal{S}$.

Proof. (\Rightarrow) If $f \in \mathcal{C}_L^{2,1}(\mathcal{S})$, we have

$$\|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y})\|_2 \le L \|\boldsymbol{x} - \boldsymbol{y}\|_2$$
, for any $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{S}$.

Let $\boldsymbol{y} := \boldsymbol{x} + \alpha \boldsymbol{d}$ for $\boldsymbol{d} \in \mathbb{R}^d \setminus \{\boldsymbol{0}\}$ and small $\alpha > 0$.

$$\|\nabla f(x + \alpha d) - \nabla f(x)\|_2 = \left\| \int_0^\alpha \nabla^2 f(x + \tau d) dd\tau \right\|$$

$$\leq \alpha L \|d\|$$

For the inequality, dividing both sides by α and $\|\boldsymbol{d}\|$ yields

$$\left\|\frac{\int_0^{\alpha} \nabla^2 f(\boldsymbol{x} + \tau \boldsymbol{d}) \boldsymbol{d} \mathrm{d} \tau}{\alpha \|\boldsymbol{d}\|}\right\| \le L.$$

Taking $\alpha \to 0^+$

$$\lim_{\alpha \to 0^+} \left\| \frac{\int_0^\alpha \nabla^2 f(\boldsymbol{x} + \tau \boldsymbol{d}) \boldsymbol{d} \mathrm{d} \tau}{\alpha \| \boldsymbol{d} \|} \right\| = \left\| \lim_{\alpha \to 0^+} \frac{\int_0^\alpha \nabla^2 f(\boldsymbol{x} + \tau \boldsymbol{d}) \boldsymbol{d} \mathrm{d} \tau}{\alpha \| \boldsymbol{d} \|} \right|$$
$$= \left\| \nabla^2 f(\boldsymbol{x}) \frac{\boldsymbol{d}}{\| \boldsymbol{d} \|} \right\| \le L.$$

By the definition of induced norm of matrices, we immediately have $\|\nabla^2 f(\boldsymbol{x})\| \leq L$.

(\Leftarrow) It is trivial by using the Newton-Leibniz formula

$$abla f(oldsymbol{y}) -
abla f(oldsymbol{x}) = \int_0^1
abla^2 f(oldsymbol{x} + au(oldsymbol{y} - oldsymbol{x})) \cdot (oldsymbol{y} - oldsymbol{x}) \mathrm{d} au$$

for any $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{S}$.

Smooth convex functions

Definition 2.0.2: Convex sets

Let $\mathcal{S} \subseteq \mathbb{R}^d$. \mathcal{S} is a **convex set** if

$$\lambda \boldsymbol{x} + (1-\lambda)\boldsymbol{y} \in \mathcal{S},$$

for any $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{S}$ and $\lambda \in [0, 1]$.

Definition 2.0.3: Differentiable convex function

A continuously differentiable function f is called *convex* on a convex set S if for any $x, y \in S$ we have

$$f(\boldsymbol{y}) \geq f(\boldsymbol{x}) + \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle.$$

Remark.

- For a differentiable convex function, the graph of the function always lies above (or on) its tangent lines at any point
- The definition of convex functions is equivalent to

$$f(\lambda \boldsymbol{x} + (1-\lambda)\boldsymbol{y}) \le \lambda f(\boldsymbol{x}) + (1-\lambda)f(\boldsymbol{y})$$

for any $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{S}$ and $\lambda \in [0, 1]$, if f is defined and differentiable on the convex set \mathcal{S} .

• If -f is convex, we call f concave.

Theorem 2.0.4

A continuously differentiable function f is convex on a convex set S iff. for any x, y we have

$$\langle \nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle \ge 0.$$

Proof. (\Rightarrow) It is trivial by the definition of differentiable convex functions.

 (\Leftarrow) By the Newton-Leibniz formula, we have

$$\begin{split} f(\boldsymbol{y}) - f(\boldsymbol{x}) &= \int_0^1 \langle \nabla f(\boldsymbol{x} + \tau(\boldsymbol{y} - \boldsymbol{x})), \boldsymbol{y} - \boldsymbol{x} \rangle \mathrm{d}\tau \\ &= \int_0^1 \langle \nabla f(\boldsymbol{x} + \tau(\boldsymbol{y} - \boldsymbol{x})) - \nabla f(\boldsymbol{x}) + \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle \mathrm{d}\tau \\ &= \int_0^1 \langle \nabla f(\boldsymbol{x} + \tau(\boldsymbol{y} - \boldsymbol{x})) - \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle \mathrm{d}\tau + \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle \\ &\geq \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle. \end{split}$$

Theorem 2.0.5

Let S be an open set. A twice continuously differentiable function f is convex iff. for any $x \in S$ we have

$$\nabla^2 f(\boldsymbol{x}) \succeq 0.$$

Proof. We skip the proof here.

Theorem 2.0.6: Sufficient condition for optimality

Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is *L*-smooth and convex. If $\nabla f(\boldsymbol{x}^*) = 0$ then \boldsymbol{x}^* is the global minimum of f on \mathbb{R}^d .

Proof. We also skip the proof.

The following theorem shows the optimal condition on a subset of \mathbb{R}^d .

Theorem 2.0.7: Optimal condition on a closed and convex set

Let $f : S \subseteq \mathbb{R}^d \to \mathbb{R}$ be continuously differentiable and convex. Suppose S is a closed and convex set. Then a point x^* is a minimum point of f on S iif.

$$\langle \nabla f(\boldsymbol{x}^*), \boldsymbol{x} - \boldsymbol{x}^* \rangle \geq 0$$

for any $\boldsymbol{x} \in \mathcal{S}$.

Proof. (\Rightarrow) Suppose there exists some $x^{\ddagger} \in S$ such that

$$\langle \nabla f(\boldsymbol{x}^*), \boldsymbol{x}^{\ddagger} - \boldsymbol{x}^* \rangle < 0.$$

By the definition of directional derivative, we have

$$\lim_{t\to 0^+} \frac{f(\boldsymbol{x}^* + t(\boldsymbol{x}^{\ddagger} - \boldsymbol{x}^*)) - f(\boldsymbol{x}^*)}{t} = \langle \nabla f(\boldsymbol{x}^*), \boldsymbol{x}^{\ddagger} - \boldsymbol{x}^* \rangle < 0.$$

Hence, for some small t_0 such that $\boldsymbol{x}^* + t_0(\boldsymbol{x}^{\ddagger} - \boldsymbol{x}^*) \in \mathcal{S}$,

$$f(x^* + t_0(x^{\ddagger} - x^*)) < f(x^*)$$

which leads to contradiction with the optimal of x^* .

 (\Leftarrow) It is trivial.

Theorem 2.0.8

Let $f : \mathbb{R}^d \to \mathbb{R}$ be *L*-smooth and convex. The following inequalities hold for any $x, y \in \mathbb{R}^d$.

$$egin{aligned} f(oldsymbol{y}) &\leq f(oldsymbol{x}) + \langle
abla f(oldsymbol{x}), oldsymbol{y} - oldsymbol{x}
angle + rac{L}{2} \|oldsymbol{x} - oldsymbol{y}\|_2^2 \ &rac{1}{2L} \|
abla f(oldsymbol{x}) -
abla f(oldsymbol{y})\|_2^2 &\leq f(oldsymbol{y}) - f(oldsymbol{x}) - \langle
abla f(oldsymbol{x}), oldsymbol{y} - oldsymbol{x}
angle
angle. \end{aligned}$$

Proof. To show the first inequality, we have

$$\begin{split} f(\boldsymbol{y}) - f(\boldsymbol{x}) &= \int_0^1 \langle \nabla f(\boldsymbol{x} + \tau(\boldsymbol{y} - \boldsymbol{x})), \boldsymbol{y} - \boldsymbol{x} \rangle \mathrm{d}\tau \\ &= \int_0^1 \langle \nabla f(\boldsymbol{x} + \tau(\boldsymbol{y} - \boldsymbol{x})) - \nabla f(\boldsymbol{x}) + \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle \mathrm{d}\tau \\ &= \int_0^1 \langle \nabla f(\boldsymbol{x} + \tau(\boldsymbol{y} - \boldsymbol{x})) - \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle \mathrm{d}\tau + \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle \\ &\leq \int_0^1 \| \nabla f(\boldsymbol{x} + \tau(\boldsymbol{y} - \boldsymbol{x})) - \nabla f(\boldsymbol{x}) \| \cdot \| \boldsymbol{y} - \boldsymbol{x} \| \mathrm{d}\tau + \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle \\ &\leq \int_0^1 L\tau \| \boldsymbol{y} - \boldsymbol{x} \|^2 \mathrm{d}\tau + \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle \\ &= \frac{L}{2} \| \boldsymbol{y} - \boldsymbol{x} \| + \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle, \end{split}$$

which is rearranged as

$$f(\boldsymbol{y}) \leq f(\boldsymbol{x}) + \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle + \frac{L}{2} \|\boldsymbol{x} - \boldsymbol{y}\|_2^2.$$
 (Upper-Bound)

To show the second inequality, we first take $\boldsymbol{y} = \boldsymbol{x} - \frac{1}{L} \nabla f(\boldsymbol{x})$ in (Upper-Bound) and obtain

$$\frac{1}{2L} \|\nabla f(\boldsymbol{x})\|_2^2 \leq f(\boldsymbol{x}) - f(\boldsymbol{x} - \frac{1}{L}\nabla f(\boldsymbol{x})) \text{ for any } \boldsymbol{x} \in \mathbb{R}^d.$$

Let us fix \boldsymbol{x} and define $\phi(\boldsymbol{y}) = f(\boldsymbol{y}) - \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} \rangle$ for any $\boldsymbol{y} \in \mathbb{R}^d$. Note that $\phi(\boldsymbol{z})$ is *L*-smooth and convex, and hence

$$\frac{1}{2L} \|\nabla \phi(\boldsymbol{y})\|_2^2 \leq \phi(\boldsymbol{y}) - \phi(\boldsymbol{y} - \frac{1}{L} \nabla \phi(\boldsymbol{y})).$$

Since $\nabla \phi(\boldsymbol{x}) = 0$, ϕ attains its minimum at \boldsymbol{x} . Therefore

$$\begin{split} &\frac{1}{2L} \|\nabla \phi(\boldsymbol{y})\|_2^2 \leq \phi(\boldsymbol{y}) - \phi\left(\boldsymbol{y} - \frac{1}{L} \nabla \phi(\boldsymbol{y})\right). \\ &\leq \phi(\boldsymbol{y}) - \phi(\boldsymbol{x}), \end{split}$$

and we get the second inequality since $\nabla \phi(\boldsymbol{y}) = \nabla f(\boldsymbol{y}) - \nabla f(\boldsymbol{x})$.

Remark.

These two inequalities are important for convergence analysis of first-order methods.

We know that the convex functions are not necessarily to be differentiable.

Definition 2.0.9: Not-necessarily differentiable convex functions

A function f is called convex on a convex set S if for any $x, y \in S$ we have

$$f(\lambda \boldsymbol{x} + (1 - \lambda)\boldsymbol{y}) \le \lambda f(\boldsymbol{x}) + (1 - \lambda)f(\boldsymbol{y})$$

for any $\lambda \in [0, 1]$.

We have mentioned that these two definitions of convex functions are equivalent if f is differentiable on S.

Lemma 2.0.10: Jensen's inequality

Let $f : S \subseteq \mathbb{R}^d \to \mathbb{R}$ be convex and S is a convex set. Then for any sequence of $(\boldsymbol{x}_i)_{i=1}^n \subseteq S$ and any $n \in \mathbb{N}$, we have

$$f(\sum_{i=1}^{n} \alpha_i \boldsymbol{x}_i) \le \sum_{i=1}^{n} \alpha_i f(\boldsymbol{x}_i)$$

if
$$\sum_{i=1}^{n} \alpha_i = 1$$
 and $\alpha_i \ge 0 (i = 1, 2, ..., n)$.

We call z is a convex combination of $\{x_1, x_2, \dots, x_n\}$ if there exists $\lambda = (\lambda_i) \in \mathbb{R}^n$ such that

$$oldsymbol{z} = \sum_{i=1}^n \lambda_i oldsymbol{x}_i$$

satisfying $\sum_{i=1}^{n} \lambda_i = 1$ and $\lambda_i \ge 0$ for all i.

Definition 2.0.11: Convex hulls

Let $S \subseteq \mathbb{R}^d$. We call a set **convex hull** of S, denoted by $\operatorname{conv}(S)$ if any element of this set, can be expressed as a convex combination of points from S. Mathematically, for any $z \in \operatorname{conv}(S)$, there exists a sequence $\{x_i\}_{i=1}^n \subseteq S$ for $n \in \mathbb{N}$ such that

$$oldsymbol{z} = \sum_{i=1}^n \lambda_i oldsymbol{x}_i$$

satisfying $\sum_{i=1}^{n} \lambda_i = 1$ and $\lambda_i \ge 0$ for all i.

By Jensen's inequality, we immediately reach the following lemma.

Lemma 2.0.12

Let $f : \mathbb{R}^d \to \mathbb{R}$ be convex and S be a subset of \mathbb{R}^d . Then we have

$$\max_{\boldsymbol{x}\in \text{conv}(\mathcal{S})} f(\boldsymbol{x}) = \max_{\mathcal{S}} f(\boldsymbol{x}).$$

Proof. Since $\mathcal{S} \subseteq \operatorname{conv}(S)$, we have

$$\max_{\boldsymbol{x}\in \text{conv}(\mathcal{S})} f(\boldsymbol{x}) \geq \max_{\mathcal{S}} f(\boldsymbol{x}).$$

For any $\boldsymbol{z} \in \operatorname{conv}(\mathcal{S})$, there exists a $n \in \mathbb{N}$ and a sequence $(\boldsymbol{x}_i)_{i=1}^n \subseteq \mathcal{S}$ such that

$$oldsymbol{z} = \sum_{i=1}^n lpha_i oldsymbol{x}_i$$

for some $\alpha_i \ge 0$ (i = 1, 2, ..., n) and $\sum_{i=1}^n \alpha_i = 1$. Therefore, by Jensen's inequality

$$f(\boldsymbol{z}) = f(\sum_{i=1}^{n} \alpha_i \boldsymbol{x}_i) \le \sum_{i=1}^{n} \alpha_i f(\boldsymbol{x}_i) \le \max_{\mathcal{S}} f(\boldsymbol{x}) \sum_{i=1}^{n} \alpha_i \le \max_{\mathcal{S}} f(\boldsymbol{x})$$

For the arbitrariness of $\boldsymbol{z} \in \operatorname{conv}(\mathcal{S})$, we have

$$\max_{\boldsymbol{x}\in \operatorname{conv}(\mathcal{S})} f(\boldsymbol{x}) \leq \max_{\mathcal{S}} f(\boldsymbol{x}).$$

We present in the following that the non-necessarily differentiable (NND) convex functions are locally bounded and locally Lipschitz continuous.

Theorem 2.0.13

Let $f : S \subseteq \mathbb{R}^d \to \mathbb{R}$ be convex and $\boldsymbol{x}_0 \in \text{int}(S)$. Then f is locally bounded, i.e., $\exists \epsilon > 0 \text{ and } M(\boldsymbol{x}_0, \epsilon) > 0$ such that

$$f(\boldsymbol{x}) \leq M(\boldsymbol{x}_0, \epsilon)$$
 for any $\boldsymbol{x} \in \mathcal{B}_2(\boldsymbol{x}_0, \epsilon) := \{ \boldsymbol{x} \in \mathbb{R}^d : \| \boldsymbol{x} - \boldsymbol{x}_0 \|_2 \leq \epsilon \}$

Proof. Since $\boldsymbol{x}_0 \in \text{int}(\mathcal{S})$, there exists $\epsilon > 0$ such that f is defined on the hypercube $\mathcal{B}_{\infty}(\boldsymbol{x}_0, \epsilon) := \{ \boldsymbol{x} \in \mathbb{R}^d : \|\boldsymbol{x} - \boldsymbol{x}_0\|_{\infty} \leq \epsilon \}$, which is the convex hull of the set $\{ \boldsymbol{x}_0 \pm \epsilon \boldsymbol{e}_i \}_{i=1}^d$. The symbol \boldsymbol{e}_i denotes the unit vector along coordinate i.

Therefore

$$\max_{\boldsymbol{x}\in\mathcal{B}_2(\boldsymbol{x}_0,\epsilon)}f(\boldsymbol{x})\leq \max_{\boldsymbol{x}\in\mathcal{B}_\infty(\boldsymbol{x}_0,\epsilon)}=\max_{\boldsymbol{x}\in\{\boldsymbol{x}_0\pm\epsilon\boldsymbol{e}_i\}_{i=1}^d}f(\boldsymbol{x}):=M(\boldsymbol{x}_0,\epsilon),$$

where the first inequality attributes to the fact $\mathcal{B}_2(\boldsymbol{x}_0, \epsilon) \subset \mathcal{B}_\infty(\boldsymbol{x}_0, \epsilon)$ and the second equality comes from Lemma 2.0.11.

Theorem 2.0.14

а

Let $f : S \subseteq \mathbb{R}^d \to \mathbb{R}$ be convex and $x_0 \in int(S)$. Then f is locally Lipschitz continuous, i.e., $\exists \epsilon > 0$ and $\overline{M}(x_0, \epsilon) > 0$ such that

$$|f(y) - f(x_0)| \le \overline{M}(x_0, \epsilon) ||y - x_0||_2$$

for any $\boldsymbol{y} \in \mathcal{B}_2(\boldsymbol{x}_0, \epsilon) := \{ \boldsymbol{x} \in \mathbb{R}^d : \| \boldsymbol{x} - \boldsymbol{x}_0 \|_2 \le \epsilon \}$

Proof. Since $\boldsymbol{x}_0 \in \text{int}(\mathcal{S})$, there exists $\epsilon > 0$ such that f is defined on $\mathcal{B}_2(\boldsymbol{x}_0, \epsilon) := \{\boldsymbol{x} \in \mathbb{R}^d : \|\boldsymbol{x} - \boldsymbol{x}_0\|_2 \le \epsilon\}$

For $\boldsymbol{y} = \boldsymbol{x}_0$, the result is trivial.

Suppose $y \neq x_0$ and $y \in \mathcal{B}_2(x_0, \epsilon)$. We extend the line segment connecting x_0 and y so that it intersect the boundary of $\mathcal{B}_2(x_0, \epsilon)$. The intersection points are denoted by v and u, respectively.

Define $\alpha = \frac{\|\boldsymbol{x}_0 - \boldsymbol{y}\|_2}{\epsilon}$. We have

$$oldsymbol{y} = (1-lpha)oldsymbol{x}_0 + lphaoldsymbol{v}, \ oldsymbol{x}_0 = rac{lpha}{1+lpha}oldsymbol{u} + rac{1}{1+lpha}oldsymbol{y}$$

By the convexity of f,

$$f(\boldsymbol{y}) \leq (1 - \alpha)f(\boldsymbol{x}_0) + \alpha f(\boldsymbol{v})$$
$$f(\boldsymbol{x}_0) \leq \frac{\alpha}{1 + \alpha}f(\boldsymbol{u}) + \frac{1}{1 + \alpha}f(\boldsymbol{y})$$

We rearrange as

$$\begin{aligned} f(\boldsymbol{x}_0) - f(\boldsymbol{y}) &\leq \alpha(f(\boldsymbol{v}) - f(\boldsymbol{x}_0)) \leq \frac{\|\boldsymbol{x}_0 - \boldsymbol{y}\|_2}{\epsilon} (M(\boldsymbol{x}_0, \epsilon) - f(\boldsymbol{x}_0)) \\ f(\boldsymbol{y}) - f(\boldsymbol{x}_0) &\leq \alpha(f(\boldsymbol{v}) - f(\boldsymbol{x}_0)) \leq \frac{\|\boldsymbol{x}_0 - \boldsymbol{y}\|_2}{\epsilon} (M(\boldsymbol{x}_0, \epsilon) - f(\boldsymbol{x}_0)) \end{aligned}$$

by the fact that f is locally bounded by $M(\boldsymbol{x}_0, \epsilon)$.

Let $\overline{M}(\boldsymbol{x}_0, \epsilon) = (M(\boldsymbol{x}_0, \epsilon) - f(\boldsymbol{x}_0))/\epsilon$, we complete the proof.

Smooth and Strongly Convex Functions

Definition 2.0.15

A continuously differentiable function $f : \mathbb{R}^d \to \mathbb{R}$ is called μ -strongly convex on \mathbb{R}^d if there exists a constant $\mu > 0$ such that for any $x, y \in \mathbb{R}^d$ we have

$$f(\boldsymbol{y}) \ge f(\boldsymbol{x}) + \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle + \frac{\mu}{2} \| \boldsymbol{y} - \boldsymbol{x} \|_2^2.$$

For a μ -strongly convex function, we have

$$\langle \nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle \ge \mu \| \boldsymbol{x} - \boldsymbol{y} \|_2^2.$$

Theorem 2.0.16

If $f : \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex, then for any $x, y \in \mathbb{R}^d$ we have

$$egin{aligned} f(oldsymbol{y}) &\leq f(oldsymbol{x}) + \langle
abla f(oldsymbol{x}), oldsymbol{y} - oldsymbol{x}
angle + rac{1}{2\mu} \|
abla f(oldsymbol{x}) -
abla f(oldsymbol{y}), oldsymbol{x} - oldsymbol{y}
angle + rac{1}{2\mu} \|
abla f(oldsymbol{x}) -
abla f(oldsymbol{y})
angle_2, \ &\langle
abla f(oldsymbol{x}) -
abla f(oldsymbol{y}), oldsymbol{x} - oldsymbol{y}
angle \leq rac{1}{\mu} \|
abla f(oldsymbol{x}) -
abla f(oldsymbol{y}) \|_2^2, \ &\mu \| oldsymbol{x} - oldsymbol{y} f(oldsymbol{x}) -
abla f(oldsymbol{y}) \|_2^2, \ &\mu \| oldsymbol{x} - oldsymbol{y} f(oldsymbol{x}) -
abla f(oldsymbol{y}) \|_2^2, \ &\mu \| oldsymbol{x} - oldsymbol{y} f(oldsymbol{x}) -
abla f(oldsymbol{y}) \|_2^2. \end{aligned}$$

Proof. We only show the first inequality here.

For any $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^d$, we have

$$f(\boldsymbol{u}) \ge f(\boldsymbol{v}) + \langle \nabla f(\boldsymbol{v}), \boldsymbol{u} - \boldsymbol{v} \rangle + \frac{\mu}{2} \|\boldsymbol{u} - \boldsymbol{v}\|_2^2,$$

which implies

$$egin{aligned} \min_{oldsymbol{u}\in\mathbb{R}^d} f(oldsymbol{u}) &\geq \min_{oldsymbol{u}\in\mathbb{R}^d} \left\{ f(oldsymbol{v}) + \langle
abla f(oldsymbol{v}), oldsymbol{u} - oldsymbol{v}
ight\} \ &= f(oldsymbol{v}) - rac{1}{2\mu} \|
abla f(oldsymbol{v})\|_2^2. \end{aligned}$$

Let fix some $\boldsymbol{x} \in \mathbb{R}^d$ and define $\phi(\boldsymbol{z}) = f(\boldsymbol{z}) - \langle \nabla f(\boldsymbol{x}), \boldsymbol{z} \rangle$. Function $\phi(\boldsymbol{z})$ is also μ strongly convex, and therefore

$$\min_{\boldsymbol{z} \in \mathbb{R}^d} \phi(\boldsymbol{z}) \ge \phi(\boldsymbol{y}) - \frac{1}{2\mu} \|\nabla \phi(\boldsymbol{y})\|_2^2 \text{ for any } \boldsymbol{y} \in \mathbb{R}^d.$$
 (Lower-Bounded)

Note that $\nabla \phi(\boldsymbol{x}) = \boldsymbol{0}$, we have $\min_{\boldsymbol{z} \in \mathbb{R}^d} \phi(\boldsymbol{z}) = \phi(\boldsymbol{x})$. Since $\nabla \phi(\boldsymbol{y}) = \nabla f(\boldsymbol{y}) - \nabla f(\boldsymbol{x})$, substituting all the ingredients back to (Lower-Bounded)

and arranging yield

$$f(\boldsymbol{y}) \leq f(\boldsymbol{x}) + \langle
abla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x}
angle + rac{1}{2\mu} \|
abla f(\boldsymbol{x}) -
abla f(\boldsymbol{y}) \|_2^2$$

Theorem 2.0.17

If $f : \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex and L-smooth, then for any $x, y \in \mathbb{R}^d$ we have

$$\langle
abla f(oldsymbol{x}) -
abla f(oldsymbol{y}), oldsymbol{x} - oldsymbol{y}
angle \geq rac{\mu L}{\mu + L} \|oldsymbol{x} - oldsymbol{y}\|_2^2 + rac{1}{\mu + L} \|
abla f(oldsymbol{x}) -
abla f(oldsymbol{y})\|_2^2$$

Theorem 2.0.16 will be useful for the converge analysis of gradient descent. We skip the proof here.

Theorem 2.0.18

Let $f : S \subseteq \mathbb{R}^d \to \mathbb{R}$ be continuously differentiable and μ -strongly convex on a closed and convex S. Then the minimum point of f on S exists and is unique.

Proof. Let $x_0 \in S$ and define $\overline{S} = \{x \in S : f(x) \leq f(x_0)\}$. Hence minimizing f on S is equivalent to minimizing f on \overline{S} .

We are going to show that \overline{S} is bounded.

For any $\boldsymbol{x} \in \bar{\mathcal{S}}$, we have

$$f(\boldsymbol{x}_0) \ge f(\boldsymbol{x}) \ge f(\boldsymbol{x}_0) + \langle \nabla f(\boldsymbol{x}_0), \boldsymbol{x} - \boldsymbol{x}_0 \rangle + \frac{\mu}{2} \| \boldsymbol{x} - \boldsymbol{x}_0 \|_2^2.$$

which is rearranged as

$$\frac{\mu}{2} \| \boldsymbol{x} - \boldsymbol{x}_0 \|_2^2 \le \langle \nabla f(\boldsymbol{x}_0), \boldsymbol{x} - \boldsymbol{x}_0 \rangle \le \| \nabla f(\boldsymbol{x}_0) \|_2 \| \boldsymbol{x} - \boldsymbol{x}_0 \|_2$$

We use the Cauchy-Schwartz inequality in the last inequality and obtain

$$\|m{x} - m{x}_0\|_2 \leq rac{2}{\mu} \|
abla f(m{x}_0)\|_2.$$

Hence \overline{S} is bounded and is also closed by the fact that f is continuous on S.

Therefore, the minimum point of f on \overline{S} exists and so does it on S.

Let x^* and x^{\ddagger} be two minimum points of f on S. We have

$$f(\boldsymbol{x}^{\ddagger}) \geq f(\boldsymbol{x}^{*}) + \langle \nabla f(\boldsymbol{x}^{*}), \boldsymbol{x}^{\ddagger} - \boldsymbol{x}^{*} \rangle + \frac{\mu}{2} \| \boldsymbol{x}^{\ddagger} - \boldsymbol{x}^{*} \|_{2}^{2}.$$

By the fact that $f(\boldsymbol{x}^{\ddagger}) = f(\boldsymbol{x}^{\ast})$ and $\langle \nabla f(\boldsymbol{x}^{\ast}), \boldsymbol{x}^{\ddagger} - \boldsymbol{x}^{\ast} \rangle \geq 0$, we have

$$\frac{\mu}{2} \|\boldsymbol{x}^{\ddagger} - \boldsymbol{x}^{*}\|_{2}^{2} \leq 0,$$

which implies $\boldsymbol{x}^{\ddagger} = \boldsymbol{x}^{*}$

Definition 2.0.19: Not-necessarily differentiable μ -strongly convex functions

A function f is called $\mu\text{-strongly convex on a convex set }\mathcal S$ if for any $\pmb x, \pmb y \in \mathcal S$ we have

$$f(\lambda \boldsymbol{x} + (1-\lambda)\boldsymbol{y}) \leq \lambda f(\boldsymbol{x}) + (1-\lambda)f(\boldsymbol{y}) - \frac{\mu}{2}\lambda(1-\lambda)\|\boldsymbol{x} - \boldsymbol{y}\|_2^2$$

for any $\lambda \in [0, 1]$.

If f is differentiable, the definition is equivalent to the differentiable version.