
Lecture 2

Smooth and Convex Functions

Classes of differentiable functions

Let S be a subset of Rd and Ck,p
L (S) denote a family of functions satisfying

• Any f ∈ Ck,p
L (S) is k times continuously differentiable over S.

• Its pth derivative is Lipschitz continuous on S with constant L, i.e.,

∥∇pf(x)−∇pf(y)∥2 ≤ L∥x− y∥2, for any x,y ∈ S.

In this course, the function class C1,1
L (S) is of particular interest and we call any f ∈ C1,1

L (S)
L-smooth on S.

The Lipschitz continuity controls the rate of changes and the following lemma shows the

fact in a special case.

Lemma 2.0.1

A function f : S ⊂ Rd → R belongs to C2,1
L (S) ⊂ C1,1

L (S) iff. (if and only if)

∥∇2f(x)∥ ≤ L, for any x ∈ S.

Proof. (⇒) If f ∈ C2,1
L (S), we have

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2, for any x,y ∈ S.

Let y := x+ αd for d ∈ Rd\{0} and small α > 0.

∥∇f(x+ αd)−∇f(x)∥2 =

∥∥∥∥∫ α

0

∇2f(x+ τd)ddτ

∥∥∥∥
≤ αL∥d∥

For the inequality, dividing both sides by α and ∥d∥ yields∥∥∥∥∥
∫ α

0
∇2f(x+ τd)ddτ

α∥d∥

∥∥∥∥∥ ≤ L.
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Taking α → 0+

lim
α→0+

∥∥∥∥∥
∫ α

0
∇2f(x+ τd)ddτ

α∥d∥

∥∥∥∥∥ =

∥∥∥∥∥ lim
α→0+

∫ α

0
∇2f(x+ τd)ddτ

α∥d∥

∥∥∥∥∥
=

∥∥∥∥∇2f(x)
d

∥d∥

∥∥∥∥ ≤ L.

By the definition of induced norm of matrices, we immediately have ∥∇2f(x)∥ ≤ L.

(⇐) It is trivial by using the Newton-Leibniz formula

∇f(y)−∇f(x) =

∫ 1

0

∇2f(x+ τ(y − x)) · (y − x)dτ,

for any x,y ∈ S.

Smooth convex functions

Definition 2.0.2: Convex sets

Let S ⊆ Rd. S is a convex set if

λx+ (1− λ)y ∈ S,

for any x,y ∈ S and λ ∈ [0, 1].

Definition 2.0.3: Differentiable convex function

A continuously differentiable function f is called convex on a convex set S if for any

x,y ∈ S we have

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩.

Remark.

• For a differentiable convex function, the graph of the function always lies above (or

on) its tangent lines at any point

• The definition of convex functions is equivalent to

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for any x,y ∈ S and λ ∈ [0, 1], if f is defined and differentiable on the convex set

S.

• If −f is convex, we call f concave.
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Theorem 2.0.4

A continuously differentiable function f is convex on a convex set S iff. for any x,y

we have

⟨∇f(x)−∇f(y),x− y⟩ ≥ 0.

Proof. (⇒) It is trivial by the definition of differentiable convex functions.

(⇐) By the Newton-Leibniz formula, we have

f(y)− f(x) =

∫ 1

0

⟨∇f(x+ τ(y − x)),y − x⟩dτ

=

∫ 1

0

⟨∇f(x+ τ(y − x))−∇f(x) +∇f(x),y − x⟩dτ

=

∫ 1

0

⟨∇f(x+ τ(y − x))−∇f(x),y − x⟩dτ + ⟨∇f(x),y − x⟩

≥ ⟨∇f(x),y − x⟩.

Theorem 2.0.5

Let S be an open set. A twice continuously differentiable function f is convex iff.

for any x ∈ S we have

∇2f(x) ⪰ 0.

Proof. We skip the proof here.

Theorem 2.0.6: Sufficient condition for optimality

Suppose f : Rd → R is L-smooth and convex. If ∇f(x∗) = 0 then x∗ is the global

minimum of f on Rd.

Proof. We also skip the proof.

The following theorem shows the optimal condition on a subset of Rd.

Theorem 2.0.7: Optimal condition on a closed and convex set

Let f : S ⊆ Rd → R be continuously differentiable and convex. Suppose S is a closed

and convex set. Then a point x∗ is a minimum point of f on S iif.

⟨∇f(x∗),x− x∗⟩ ≥ 0

for any x ∈ S.

Proof. (⇒) Suppose there exists some x‡ ∈ S such that

⟨∇f(x∗),x‡ − x∗⟩ < 0.
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By the definition of directional derivative, we have

lim
t→0+

f(x∗ + t(x‡ − x∗))− f(x∗)

t
= ⟨∇f(x∗),x‡ − x∗⟩ < 0.

Hence, for some small t0 such that x∗ + t0(x
‡ − x∗) ∈ S,

f(x∗ + t0(x
‡ − x∗)) < f(x∗)

which leads to contradiction with the optimal of x∗.

(⇐) It is trivial.

Theorem 2.0.8

Let f : Rd → R be L-smooth and convex. The following inequalities hold for any

x,y ∈ Rd.

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥x− y∥22

1

2L
∥∇f(x)−∇f(y)∥22 ≤ f(y)− f(x)− ⟨∇f(x),y − x⟩.

Proof. To show the first inequality, we have

f(y)− f(x) =

∫ 1

0

⟨∇f(x+ τ(y − x)),y − x⟩dτ

=

∫ 1

0

⟨∇f(x+ τ(y − x))−∇f(x) +∇f(x),y − x⟩dτ

=

∫ 1

0

⟨∇f(x+ τ(y − x))−∇f(x),y − x⟩dτ + ⟨∇f(x),y − x⟩

≤
∫ 1

0

∥∇f(x+ τ(y − x))−∇f(x)∥ · ∥y − x∥dτ + ⟨∇f(x),y − x⟩

≤
∫ 1

0

Lτ∥y − x∥2dτ + ⟨∇f(x),y − x⟩

=
L

2
∥y − x∥+ ⟨∇f(x),y − x⟩,

which is rearranged as

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥x− y∥22. (Upper-Bound)

To show the second inequality, we first take y = x − 1
L∇f(x) in (Upper-Bound) and

obtain
1

2L
∥∇f(x)∥22 ≤ f(x)− f(x− 1

L
∇f(x)) for any x ∈ Rd.

Let us fix x and define ϕ(y) = f(y) − ⟨∇f(x),y⟩ for any y ∈ Rd. Note that ϕ(z) is

L-smooth and convex, and hence

1

2L
∥∇ϕ(y)∥22 ≤ ϕ(y)− ϕ(y − 1

L
∇ϕ(y)).
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Since ∇ϕ(x) = 0, ϕ attains its minimum at x. Therefore

1

2L
∥∇ϕ(y)∥22 ≤ ϕ(y)− ϕ

(
y − 1

L
∇ϕ(y)

)
.

≤ ϕ(y)− ϕ(x),

and we get the second inequality since ∇ϕ(y) = ∇f(y)−∇f(x).

Remark.

These two inequalities are important for convergence analysis of first-order methods.

We know that the convex functions are not necessarily to be differentiable.

Definition 2.0.9: Not-necessarily differentiable convex func-

tions

A function f is called convex on a convex set S if for any x,y ∈ S we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for any λ ∈ [0, 1].

We have mentioned that these two definitions of convex functions are equivalent if f is

differentiable on S.

Lemma 2.0.10: Jensen’s inequality

Let f : S ⊆ Rd → R be convex and S is a convex set. Then for any sequence of

(xi)
n
i=1 ⊆ S and any n ∈ N, we have

f(

n∑
i=1

αixi) ≤
n∑

i=1

αif(xi)

if
n∑

i=1

αi = 1 and αi ≥ 0(i = 1, 2, . . . , n).

We call z is a convex combination of {x1,x2, · · · ,xn} if there exists λ = (λi) ∈ Rn

such that

z =

n∑
i=1

λixi

satisfying
n∑

i=1

λi = 1 and λi ≥ 0 for all i.
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Definition 2.0.11: Convex hulls

Let S ⊆ Rd. We call a set convex hull of S, denoted by conv(S) if any element of

this set, can be expressed as a convex combination of points from S. Mathematically,

for any z ∈ conv(S), there exists a sequence {xi}ni=1 ⊆ S for n ∈ N such that

z =

n∑
i=1

λixi

satisfying
n∑

i=1

λi = 1 and λi ≥ 0 for all i.

By Jensen’s inequality, we immediately reach the following lemma.

Lemma 2.0.12

Let f : Rd → R be convex and S be a subset of Rd. Then we have

max
x∈conv(S)

f(x) = max
S

f(x).

Proof. Since S ⊆ conv(S), we have

max
x∈conv(S)

f(x) ≥ max
S

f(x).

For any z ∈ conv(S), there exists a n ∈ N and a sequence (xi)
n
i=1 ⊆ S such that

z =

n∑
i=1

αixi

for some αi ≥ 0(i = 1, 2, . . . , n) and
n∑

i=1

αi = 1.

Therefore, by Jensen’s inequality

f(z) = f(

n∑
i=1

αixi) ≤
n∑

i=1

αif(xi) ≤ max
S

f(x)

n∑
i=1

αi ≤ max
S

f(x).

For the arbitrariness of z ∈ conv(S), we have

max
x∈conv(S)

f(x) ≤ max
S

f(x).

We present in the following that the non-necessarily differentiable (NND) convex func-

tions are locally bounded and locally Lipschitz continuous.
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Theorem 2.0.13

Let f : S ⊆ Rd → R be convex and x0 ∈ int(S). Then f is locally bounded, i.e.,

∃ϵ > 0 and M(x0, ϵ) > 0 such that

f(x) ≤ M(x0, ϵ) for any x ∈ B2(x0, ϵ) := {x ∈ Rd : ∥x− x0∥2 ≤ ϵ}

Proof. Since x0 ∈ int(S), there exists ϵ > 0 such that f is defined on the hypercube

B∞(x0, ϵ) := {x ∈ Rd : ∥x− x0∥∞ ≤ ϵ}, which is the convex hull of the set {x0 ± ϵei}di=1.

The symbol ei denotes the unit vector along coordinate i.

Therefore

max
x∈B2(x0,ϵ)

f(x) ≤ max
x∈B∞(x0,ϵ)

= max
x∈{x0±ϵei}d

i=1

f(x) := M(x0, ϵ),

where the first inequality attributes to the fact B2(x0, ϵ) ⊂ B∞(x0, ϵ) and the second equality

comes from Lemma 2.0.11.

Theorem 2.0.14

Let f : S ⊆ Rd → R be convex and x0 ∈ int(S). Then f is locally Lipschitz

continuous, i.e., ∃ϵ > 0 and M̄(x0, ϵ) > 0 such that

|f(y)− f(x0)| ≤ M̄(x0, ϵ)∥y − x0∥2

for any y ∈ B2(x0, ϵ) := {x ∈ Rd : ∥x− x0∥2 ≤ ϵ}

Proof. Since x0 ∈ int(S), there exists ϵ > 0 such that f is defined on B2(x0, ϵ) := {x ∈
Rd : ∥x− x0∥2 ≤ ϵ}

For y = x0, the result is trivial.

Suppose y ̸= x0 and y ∈ B2(x0, ϵ). We extend the line segment connecting x0 and y so

that it intersect the boundary of B2(x0, ϵ). The intersection points are denoted by v and u,

respectively.

Define α = ∥x0−y∥2

ϵ . We have

y = (1− α)x0 + αv,

x0 =
α

1 + α
u+

1

1 + α
y.

By the convexity of f ,

f(y) ≤ (1− α)f(x0) + αf(v)

f(x0) ≤
α

1 + α
f(u) +

1

1 + α
f(y).

We rearrange as

f(x0)− f(y) ≤ α(f(v)− f(x0)) ≤
∥x0 − y∥2

ϵ
(M(x0, ϵ)− f(x0))

f(y)− f(x0) ≤ α(f(v)− f(x0)) ≤
∥x0 − y∥2

ϵ
(M(x0, ϵ)− f(x0))
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by the fact that f is locally bounded by M(x0, ϵ).

Let M̄(x0, ϵ) = (M(x0, ϵ)− f(x0))/ϵ, we complete the proof.

Smooth and Strongly Convex Functions

Definition 2.0.15

A continuously differentiable function f : Rd → R is called µ-strongly convex on Rd

if there exists a constant µ > 0 such that for any x,y ∈ Rd we have

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
∥y − x∥22.

For a µ-strongly convex function, we have

⟨∇f(x)−∇f(y),x− y⟩ ≥ µ∥x− y∥22.

Theorem 2.0.16

If f : Rd → R is µ-strongly convex, then for any x,y ∈ Rd we have

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ 1

2µ
∥∇f(x)−∇f(y)∥22,

⟨∇f(x)−∇f(y),x− y⟩ ≤ 1

µ
∥∇f(x)−∇f(y)∥22,

µ∥x− y∥2 ≤ ∥∇f(x)−∇f(y)∥22.

Proof. We only show the first inequality here.

For any u,v ∈ Rd, we have

f(u) ≥ f(v) + ⟨∇f(v),u− v⟩+ µ

2
∥u− v∥22,

which implies

min
u∈Rd

f(u) ≥ min
u∈Rd

{
f(v) + ⟨∇f(v),u− v⟩+ µ

2
∥u− v∥22

}
= f(v)− 1

2µ
∥∇f(v)∥22.

Let fix some x ∈ Rd and define ϕ(z) = f(z) − ⟨∇f(x), z⟩. Function ϕ(z) is also µ-

strongly convex, and therefore

min
z∈Rd

ϕ(z) ≥ ϕ(y)− 1

2µ
∥∇ϕ(y)∥22 for any y ∈ Rd. (Lower-Bounded)

Note that ∇ϕ(x) = 0, we have min
z∈Rd

ϕ(z) = ϕ(x).

Since∇ϕ(y) = ∇f(y)−∇f(x), substituting all the ingredients back to (Lower-Bounded)
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and arranging yield

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ 1

2µ
∥∇f(x)−∇f(y)∥22

Theorem 2.0.17

If f : Rd → R is µ-strongly convex and L-smooth, then for any x,y ∈ Rd we have

⟨∇f(x)−∇f(y),x− y⟩ ≥ µL

µ+ L
∥x− y∥22 +

1

µ+ L
∥∇f(x)−∇f(y)∥22

Theorem 2.0.16 will be useful for the converge analysis of gradient descent. We skip the

proof here.

Theorem 2.0.18

Let f : S ⊆ Rd → R be continuously differentiable and µ-strongly convex on a closed

and convex S. Then the minimum point of f on S exists and is unique.

Proof. Let x0 ∈ S and define S̄ = {x ∈ S : f(x) ≤ f(x0)}. Hence minimizing f on S is

equivalent to minimizing f on S̄.
We are going to show that S̄ is bounded.

For any x ∈ S̄, we have

f(x0) ≥ f(x) ≥ f(x0) + ⟨∇f(x0),x− x0⟩+
µ

2
∥x− x0∥22.

which is rearranged as

µ

2
∥x− x0∥22 ≤ ⟨∇f(x0),x− x0⟩ ≤ ∥∇f(x0)∥2∥x− x0∥2

We use the Cauchy-Schwartz inequality in the last inequality and obtain

∥x− x0∥2 ≤ 2

µ
∥∇f(x0)∥2.

Hence S̄ is bounded and is also closed by the fact that f is continuous on S.
Therefore, the minimum point of f on S̄ exists and so does it on S.
Let x∗ and x‡ be two minimum points of f on S.
We have

f(x‡) ≥ f(x∗) + ⟨∇f(x∗),x‡ − x∗⟩+ µ

2
∥x‡ − x∗∥22.

By the fact that f(x‡) = f(x∗) and ⟨∇f(x∗),x‡ − x∗⟩ ≥ 0, we have

µ

2
∥x‡ − x∗∥22 ≤ 0,
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which implies x‡ = x∗

Definition 2.0.19: Not-necessarily differentiable µ-strongly

convex functions

A function f is called µ-strongly convex on a convex set S if for any x,y ∈ S we

have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− µ

2
λ(1− λ)∥x− y∥22

for any λ ∈ [0, 1].

If f is differentiable, the definition is equivalent to the differentiable version.
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